Pre-cessation varenicline treatment vs post-cessation NRT: an uneven playing field

The study by Aubin et al.1 published in this issue is significant in that it is the first head-to-head comparison of the two smoking cessation pharmacotherapies: varenicline and nicotine replacement therapy (NRT). The results suggest that varenicline yielded higher rates of smoking abstinence than NRT. However, an important flaw in the design hampers the interpretation of the results. An imbalance resulted from the fact that the varenicline group began treatment 1 week before the target quit date whereas the NRT group began treatment on the quit date. Although the authors justified this decision based on current manufacturer’s instructions for using NRT, the asymmetric design is problematic.

The problem with the imbalanced design stems from the finding that initiating NRT before the quit date approximately doubles the efficacy of NRT compared with beginning treatment on the quit date.2 It is plausible that a similar enhancement of efficacy results from initiating varenicline before the quit date. Therefore, beginning varenicline but not NRT before the quit date may have created an unfair advantage for varenicline. Although most studies of pre-cessation NRT have used pretreatment for 2 weeks as opposed to 1 week, it is conceivable that even pre-cessation exposure to treatment for 1 week increases success rates. A likely mechanism for the enhancement in efficacy with pre-cessation treatment is behavioural extinction.3 Extinction results from a reduction in the rewarding effects of cigarettes when they are smoked concurrently with NRT or with a nicotinic antagonist such as mecamylamine,4 or with the nicotinic receptor partial agonist varenicline.5 This decrement in smoking reward may, in turn, reduce dependence levels and facilitate quitting smoking.

Pre-cessation NRT is not approved by the Food and Drugs Administration, but this recommendation may change as more studies replicate the positive results with pre-cessation NRT.6 Moreover, the main concern expressed regarding smoking concurrently with NRT—nicotine overdose—can be obviated by switching patients to denicotinised cigarettes during pre-cessation treatment with NRT.7 A comparison of NRT and varenicline using equal pre-cessation treatment regimens will ultimately prove informative in evaluating these two treatments.

J E Rose
Correspondence to: Professor J E Rose, Department of Psychiatry and Behavioral Sciences, Center for Nicotine and Smoking Cessation Research, Duke University Medical Center, 2424 Erwin Road, Suite 201, Durham, NC 27705, USA; rose0003@mc.duke.edu
Competing interests: The author is a named inventor on several nicotine replacement patents.

REFERENCES

Authors’ reply

We acknowledge the proposition raised by Dr Rose that a comparison of nicotine replacement therapy (NRT) and varenicline using equal pre-cessation treatment regimens may result in different efficacy outcomes from those found in our trial. However, we would like to reiterate that our open-label comparison of varenicline with NRT was a pragmatic trial based on current treatment regimen recommendations by the manufacturers of the products and in accordance with current recommendations for transdermal NRT use in established health guidelines.

Dr Rose suggests that the imbalance in pre-cessation treatment between products in our trial reflects a flaw in the design of our study. The objective of this study was to compare a 12-week standard regimen of varenicline with a 10-week standard regimen of transdermal NRT. As the differentiation in treatment between products is openly acknowledged and justified, we would argue that differences in pre-cessation treatment do not reflect a design flaw but, rather, a potential limitation. Even though pre-cessation treatment was not directly referred to, our paper discusses the possibility of a treatment bias resulting from differences in treatment periods between products and recognises this as a limitation of the study.

While use of pre-cessation NRT may be being adopted in some cases, its use is not currently general practice. A standard regimen comparison, as with this open-label design, is therefore more likely to reflect results found in real-world settings. Indeed, recent real-world data from Stop Smoking Services in England provide further support for our findings of greater efficacy with varenicline compared with NRT. The 4-week quit rates in participants set a quit date between April and September 2007 were: varenicline 64% (n = 32 879), bupropion SR 53% (n = 12 767) and NRT 48% (n = 243 123).

The evidence of improved efficacy of transdermal NRT when used during a pre-cessation period in comparison with NRT use without a pre-cessation period may provide a rationale for conducting a comparison of varenicline versus NRT with equal pre-cessation treatment periods. The authors of the currently discussed open-label trial agree that this would certainly be an interesting study for future research.

REFERENCES


Clinically significant outcomes in smoking cessation

The study by Aubin et al published in this issue comparing varenicline with nicotine replacement therapy (NRT). The authors have shown a significant difference in continuous abstinence rate at the end of treatment of 12 (or 11) weeks, favouring varenicline. However, the beneficial effect is not maintained in a significant fashion up to the end of the study period at 52 weeks. In this context, we would question the validity of measuring abstinence at 12 (or 11) weeks as a primary outcome. It is the long-term outcomes of a smoking cessation therapy that should be most clinically relevant, and therefore the most important finding in this trial. Indeed, the Russell standard recommends that, as a bench mark, quit rates should be assessed at 6 and 12 months and biochemically verified at each point. Other comparative studies using NRT have also used 6- or 12-month periods to assess the efficacy.

Given the fact that there was no significant difference in the abstinence rates at 12 months between the two treatments, it calls into question the cost-effectiveness of varenicline as a pharmacotherapy for smoking cessation. The courses of treatment used in the trial cost £163.80 and £76.31 for varenicline and NRT, respectively.

Clinicians are under pressure at all times to cut costs and be evidence-based, and this trial seems to show that there is currently no compelling reason to use the newer, more expensive agent in the smoking cessation clinic, apart from its apparent benefit in reducing craving and some other non-specific effects in the early phases of treatment.

We think the conclusions of the trial are presented in such a way as to give more emphasis to the efficacy of varenicline compared with NRT. But it seems that what this study really tells us is that there is no significant difference in long-term abstinence when comparing varenicline with NRT in an open-label comparison.

REFERENCES


Authors’ reply

We recognise the relevance of showing long-term outcomes of smoking cessation therapies. However, many drug trials use end of treatment measures as primary outcomes. Given the high attrition rates during the follow-up phase, choosing long-term primary outcomes has a high impact on the numbers of subjects needed. It is noteworthy that the study cited by Hillman et al failed to show any significant difference between the efficacy of a nicotine patch and placebo at 6 and 12 months of follow-up.

We would like to acknowledge that the Russell standard includes six standard criteria. One of these criteria is to use an “intent to treat” approach in which all randomised subjects are included in the analyses (unless they have died or moved to an untraceable address). Using an all-randomised population, our long-term quit


H-J Aubin, A Bobak, J R Britton, C Oncken, C B Billing Jr, J Gong, K E Williams, K R Reeves

1 Hôpital Emile Roux, Assistance Publique-Hôpitaux de Paris, Limel-Brévannes, France; Centre d’Enseignement, de Recherche et de Traitement des Addictions, Hôpital Paul Brousse, Paris, France; Assistance Publique-Hôpitaux de Paris, Villejuif, France; INSERM, Paris, France; 2 Wandsworth Medical Centre, London, UK; University of Nottingham, Nottingham, UK; 3 University of Connecticut Health Center, Farmington, Connecticut, USA; 4 Pfizer Global Research and Development, Groton, Connecticut, USA

Correspondence to: Dr H-J Aubin, Centre de Traitement des Addictions, Hôpital Émile Roux, F-94456 Limel-Brévannes Cedex, France; henri-jean.aubin@erx.aphp.fr

Competing interests: H-JA has received sponsorship to attend scientific meetings, speaker honoraria and consultancy fees from GlaxoSmithKline, Pierre-Fabre Santé, Sanofi-Aventis, Merck-Lipha and Pfizer. AB has received sponsorship to attend scientific meetings, speaker honoraria and consultancy fees from Boehringer Ingelheim, GlaxoSmithKline, Novartis and Pfizer. In the past 5 years JRB has received consultancy fees from Xenova and Novartis and his employing institution has received consultancy fees and honoraria on his behalf from Pfizer. CD has received honoraria and consulting fees from Pfizer; nicotine and placebo products for research studies at no cost from GlaxoSmithKline, and honoraria from Pri-Med and CME outfitters. CBJ, JL, KEW and KRR are employees of Pfizer.

REFERENCE


Competing interests: None.

REFERENCES