Therefore, the challenge is to reconstruct the CRB-65 score into a tool more valuable for this population, providing not only good prediction of the risk of death from CAP but also of the risk of hospitalisation in terms of functional deterioration. The decision to hospitalise will then be made based on this tool and on the background of the quality of onsite facilities for pneumonia treatment.\(^\text{17}\) and possible DNR decisions.\(^\text{20}\)

Another important issue to consider in the assessment of pneumonia severity is the incorporation of new biomarkers in refining prediction rules.\(^\text{21}\) Several biomarkers are being evaluated in CAP, including procalcitonin (PCT),\(^\text{22,23}\) proadrenomedullin\(^\text{24}\) and copeptin.\(^\text{25}\) All of these biomarkers have performed well. However, what is the real progress in determining biomarkers? Can they replace clinical rules or even overrule clinical judgement? Most recently, the CAPNETZ investigators demonstrated that the CRB-65 score and PCT were equally predictive of inhospital death of CAP but obviously both predictors did not measure the same. Using 0.225 ng/ml as the cut-off, deaths were highly more probable in those patients with PCT values above the cut-offs across all CRB-65 risk classes.\(^\text{20}\) If these data were validated and supported in a large population, this would be an ideal strategy to increase the amount of candidates for ambulatory treatment with very low risk of death despite elevated CRB-65 scores. At the same time, it would be a great paradigm of how basic clinical information can be refined by highly sophisticated but rapidly available laboratory investigations.

If we look back, impressive progress has been made in severity assessment of CAP, and CRB-65 seems to be a near ideal tool for the incorporation of new biomarkers in severity assessment of CAP, but also to prevent potential harm from the CRB-65 score into a tool more valuable for this population, providing not only good prediction of the risk of death from CAP but also of the risk of hospitalisation in terms of functional deterioration. The decision to hospitalise will then be made based on this tool and on the background of the quality of onsite facilities for pneumonia treatment.\(^\text{17}\) and possible DNR decisions.\(^\text{20}\)

Another important issue to consider in the assessment of pneumonia severity is the incorporation of new biomarkers in refining prediction rules.\(^\text{21}\) Several biomarkers are being evaluated in CAP, including procalcitonin (PCT),\(^\text{22,23}\) proadrenomedullin\(^\text{24}\) and copeptin.\(^\text{25}\) All of these biomarkers have performed well. However, what is the real progress in determining biomarkers? Can they replace clinical rules or even overrule clinical judgement? Most recently, the CAPNETZ investigators demonstrated that the CRB-65 score and PCT were equally predictive of inhospital death of CAP but obviously both predictors did not measure the same. Using 0.225 ng/ml as the cut-off, deaths were highly more probable in those patients with PCT values above the cut-offs across all CRB-65 risk classes.\(^\text{20}\) If these data were validated and supported in a large population, this would be an ideal strategy to increase the amount of candidates for ambulatory treatment with very low risk of death despite elevated CRB-65 scores. At the same time, it would be a great paradigm of how basic clinical information can be refined by highly sophisticated but rapidly available laboratory investigations.

If we look back, impressive progress has been made in severity assessment of CAP, and CRB-65 seems to be a near ideal tool to help the clinician to validate his clinical judgment. If we look forward, important challenges have to be faced. These include the task of refining the CRB-65 score by incorporation of functional parameters and reconstruction of CRB-65 for the very elderly and severely disabled population in order not only to assess the risk of death but also to prevent potential harm from hospitalisation. On the other hand, attempts to incorporate biomarkers into clinical prediction rule based algorithms for the site of care seem promising. Who could ask for more?
decisions about whether the benefits from licensed medications are worth the costs and therefore whether such interventions can be used in the National Health Service (NHS). NICE approved varenicline in 2007, but many local primary care organisations have limited the use of varenicline by making it a second-line treatment choice. The main reason given is the lack of trial data against the key competitor, NRT, but many have felt that the main reason was actually cost. Varenicline costs slightly more per treatment course than NRT or bupropion and considerably more than nortriptyline, an effective but unlicensed medication. The trial by Aubin and colleagues showing that varenicline is more effective than NRT and the trials of varenicline versus bupropion mean that varenicline must be considered a first-line choice in smoking cessation treatment. The recently published NICE guidance on smoking cessation affirmed this view, and it should be unnecessary for patients to have to try and to have failed with other medications before being offered varenicline in the NHS or in other health systems.

Although the statistically non-significant difference in continuous abstinence at 1 year in this trial can be considered as lack of evidence of long-term superiority, this would be clutching at straws. If we put together the data showing that varenicline is clearly more effective than bupropion with data that bupropion and NRT are roughly equally effective, the data from this trial and from the other published head-to-head comparison with NRT and data from the UK stop smoking services, we see a consistent picture. Varenicline is clearly more effective. Furthermore, although it is somewhat more expensive per treatment course, the difference in cost is small and it is likely to be the most cost-effective medication available for smoking cessation. Thus, we are in the happy position of having a licensed medication approved for use by NICE that is more effective and more cost-effective than competitors.

Should varenicline become the only medication to be used in smoking cessation?

In most areas of medicine the most effective and cost-effective medication would mean other choices were rarely used, but this is unlikely to be the case in smoking cessation. We need to remind ourselves that smoking is a behaviour largely explained by addiction, and one of the hallmarks of addiction is reinstatement after abstinence. Thus, in the study by Aubin et al which probably took place in the best clinics, only a quarter of smokers remained smoke-free for 1 year. One-third of these will probably resume smoking again in the next 2 years. Thus, in the best hands, 8 or 9 out of 10 treatment episodes end in failure. According to NICE, smoking cessation treatment remains “among the most cost-effective of all healthcare interventions” because treatment is cheap and because the benefits of stopping smoking are so large in comparison to continuing. However, many failures occur early in treatment—nearly half those on varenicline had resumed smoking by the end of treatment in the trial by Aubin et al. In smoking cessation practice, then, we see a cadre of patients who have tried to stop many times and have, in effect, performed unblinded n-of-1 trials of all available smoking cessation medications. These patients are experts in which treatment works for them. Unlike many pharmacotherapies, patients can feel treatments for tobacco addiction working. Patients need to feel confident and content in their medication choice. In most conditions the main effort patients expend in treatment is remembering to take their drugs but, in smoking cessation, considerably more effort than this is usually required to achieve success. Confidence in the medication is probably important, and using patients’ past experiences and preferences is more important in smoking cessation than in many other areas of medical practice.

One issue to highlight is the fact that the comparator treatment in the trial by Aubin et al was the nicotine patch. The patch is the most widely used NRT preparation in the UK and elsewhere because it is easy to use. However, in clinical practice it is common for patients to swap forms of NRT. Overall, there is insufficient evidence to suggest that one form is more effective than another, but the clinical impression is that allowing someone to renew their confidence by swapping from a choice they see as failing them to another can help.

An important finding from the trial by Aubin et al is that the urge to smoke and the occurrence of withdrawal symptoms were reduced with varenicline compared with NRT. Consensus guidelines on measuring and analysing urges and withdrawal suggest doing so primarily in abstinent participants only, a practice not adopted by Aubin and colleagues. Data show that urges and withdrawal increase before relapse, so any arm that has a higher rate of relapse might have a higher level of urges and withdrawal and therefore these data might only show that resuming smoking was more likely on NRT. Although urges and withdrawal symptoms are associated with relapse, they are probably the cause of most relapses but it is difficult to demonstrate this conclusively. However, Stapleton analysed withdrawal only in largely abstinent smokers and found a similar pattern of results. It is likely, then, that the difference in withdrawal is real and that this is an important reason why varenicline is more effective.

It is relevant to ask why a partial nicotinic agonist such as varenicline can achieve greater suppression of nicotine withdrawal symptoms than a full agonist such as NRT. This is probably because the amount of nicotine absorbed from NRT is considerably less than from cigarettes for most smokers, and hence they suffer needless withdrawal. There is strong clinical evidence that 4 mg gum is more effective than 2 mg gum in more dependent smokers (35% increase in efficacy), and that adding two or more forms of NRT—most sensibly the patch plus a more rapid acting product (gum, nasal spray, inhalator or lozenge/microtab)—is more effective, increasing the chance of success by 35%. The study by Stapleton et al showed that combination NRT was more effective than single form NRT with no evidence that varenicline was more effective than combination NRT. However, the study could not exclude a worthwhile difference in efficacy and the point estimate of effect favoured varenicline. The key message is that combining forms of NRT should be the norm in specialist smoking cessation clinics and considered for smokers who may have relapsed on NRT but are keen to use it again in other contexts.

Aubin and colleagues also report that reinforcement from cigarettes smoked while on medication was lower on varenicline than on NRT. However, these data are difficult to interpret. First, most people who sustained prolonged abstinence probably did not smoke at all after quit day if this population is typical. Nothing predicts relapse as strongly as early lapses. Thus, this analysis will be dominated by measurements taken at week 1, prior to quitting, when participants were using varenicline but participants randomised to NRT were on no medication. It is unclear whether reduced reinforcement from cigarettes smoked before quitting partly explains the efficacy of varenicline, but positive hedonic responses to cigarettes smoked after quitting are associated with a slight increase in relapse. These data suggest that
treatment before quitting might be important. In fact, clinical data show that treatment of patients with a nicotine patch for 2 weeks before quitting is associated with a statistically significant increase in abstinence of 79% over post-cessation use only. The effectiveness of pre-cessation use is best explained by reductions in reward from smoking weakening conditioned responses, but mediation analysis of the effect of pre-cessation NRT or varenicline on cigarette reward would be needed to confirm this. Whatever the mechanism, pre-cessation use of nicotine patch should be considered in some smokers, although further large trials are probably necessary before pre-cessation use of NRT becomes the norm.

The results of the study by Aubin et al. are to be welcomed because varenicline provides another option for smokers wanting to quit. We can now provide clearer statements to our patients that varenicline is the best single pharmacotherapy to assist an attempt to quit. Although varenicline is more effective than the current standard patch, there are good reasons to assume that NRT taken before quit day and in combination might be of similar efficacy. NRT may become even more effective if newer, higher dose, rapid release formulations become available. In my view, however, in varenicline we are close to an optimal treatment for nicotine dependence, but stopping smoking involves more than treating nicotine dependence. Most people who successfully reach the end of treatment will relapse to smoking. While taking longer courses of varenicline may prevent some relapse, lifetime varenicline is unlikely to be a major solution. Instead, we need to develop cognitive-behavioural interventions together with judicious use of various medications. Until then, varenicline is a welcome treatment option that is likely to prove popular with clinicians and patients.

Funding: PA is funded by the National Institute for Health Research (NIHR) but the views expressed are not necessarily those of the NIHR or the NHS.

Competing interests: PA has done consultancy work for the pharmaceutical and biotechnology industries that led to payments to him and his institution. This includes work for companies providing smoking cessation medication including McNeil, who manufacture NRT, and Pfizer, the makers of varenicline.

REFERENCES

Lung transplant and cystic fibrosis: what’s new from the UK and France?

Peadar G Noone

Although the median survival for patients with cystic fibrosis (CF) has improved steadily over the past several decades, many patients go on to develop respiratory failure from progressive lung disease, eventually requiring lung transplantation for extended survival. Although many years have elapsed since the first lung transplants were performed for CF, the field is not without controversy. The paper recently published by Liu et al. is one recent example, suggesting that lung transplant for most children with CF under 18 years of age offers no survival advantage. The complex statistical methodology and conclusions have since been challenged and rebutted by several lung transplant experts. Controversial issues like this often reflect the shortage of randomised controlled trials for many aspects of lung transplant. Although there is much published material related to lung transplant, many protocols are based on retrospective data, or are rather centre or region specific. Although impure because of multiple confounding factors, such as small sample sizes, and varying surgical and medical protocols, these data do provide a reasonable template to formulate and update lung transplant protocols. Two such datasets are published in this issue of Thorax (see pages 725 and 732). The first represents the experience of a single centre in the UK, accounting for a large proportion of lung transplants for CF in Britain, while the second paper from France addresses a difficult issue—that is, the risks of performing lung transplantation in patients infected with Burkholderia cepacia complex (BCC) organisms. The papers are complementary: the UK experience is a general report, excluding a detailed analysis of outcomes in patients with BCC (these...