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Background: Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease associated with
significant systemic consequences. Recognition of the systemic manifestations has stimulated interest in
identifying circulating biomarkers in these patients. A systematic analysis was undertaken of multiple protein
analytes in the serum of well characterised patients with COPD and matched controls using novel protein
microarray platform (PMP) technology.
Methods: Forty-eight patients (65% men) with COPD (forced expiratory volume in 1 s ,55%) and 48
matched controls were studied. Anthropometric parameters, pulmonary function tests, 6-minute walk
distance, the BODE index and the number of exacerbations were measured and the association of these
outcomes with the baseline levels of 143 serum biomarkers measured by PMP was explored.
Results: Thirty biomarker clusters were identified and ranked by computing the predictive value of each cluster
for COPD (partial least squares discriminant analysis). From the 19 best predictive clusters, 2–3 biomarkers
were selected based on their pathophysiological profile (chemoattractants, inflammation, tissue destruction
and repair) and the statistical significance of their relationship with clinically important end points was tested.
The selected panel of 24 biomarkers correlated (p,0.01) with forced expiratory volume in 1 s, carbon
monoxide transfer factor, 6-minute walk distance, BODE index and exacerbation frequency.
Conclusion: PMP technology can be useful in identifying potential biomarkers in patients with COPD. Panels
of selected serum markers are associated with important clinical predictors of outcome in these patients.

C
hronic obstructive pulmonary disease (COPD) is projected
to be the third leading cause of death in the world by the
year 2020.1 2 Despite the well-documented role of cigar-

ette smoking in the genesis of COPD, it is unclear what steps
are involved in its pathogenesis.3 Most, if not all, patients with
COPD develop a combination of lung emphysema with its
characteristic pattern of alveolar destruction and abnormal
repair as well as small airway inflammation that persists even
years after smoking cessation.4

The current pathogenetic theories for the development of
COPD include an imbalance between the protease and
antiprotease system, dysregulation of oxidant-antioxidant
activity and chronic airway inflammation, processes that lead
to the progressive destruction and abnormal repair of the lung
connective tissue matrix.5 Recent studies have suggested that
increased apoptosis of the alveolar wall accounts in part for the
loss of lung tissue that characterises emphysema.6 7 Transgenic
and null mutant mouse studies have identified a number of
genes and pathways that, when altered, result in the
morphological changes of emphysema.8–10

Although COPD primarily affects the lungs, it is associated
with important systemic consequences which include malnu-
trition with a low body mass index (BMI)11 and impaired
peripheral muscle function.12 These clinically relevant expres-
sions of the disease have been associated with detectable
systemic changes including evidence of increased oxidative
stress, activation of circulating inflammatory cells and
increased levels of proinflammatory cytokines.13 14 The multi-
dimensional expression of COPD can be expressed by a clinical
score including BMI, degree of obstruction (O), perception of
dyspnoea (D) and exercise capacity (E) by the 6-minute walk
distance known as the BODE index.15 This index predicts
mortality better than the forced expiratory volume in 1 s
(FEV1).

We reasoned that the pathobiological processes that occur in
the lungs and possibly in systemic tissues such as the peripheral
muscles of patients with COPD could be associated with
systemic biomarker levels detectable in the systemic circulation.
Despite the many studies aimed at identifying the pathogenesis
of COPD, to our knowledge only one study16 has explored the
potential value of high-density microarray technology to
systematically define the serum protein expression profile in
patients with COPD. Using a novel protein microarray platform
(PMP) technology, we compared the serum proteomic profile of
143 serum biomarkers in patients with COPD with that of age
and sex-matched controls. We also explored the relationship
between a selected subset of 24 biomarkers with clinically
important outcome variables in COPD including lung function,
the BODE index and its components and the frequency of
exacerbations.

METHODS
Patient recruitment
This is a matched case-control study of 48 patients with severe
COPD (FEV1 ,55% predicted), 8 of whom were current
smokers. We then matched 8 control smokers and 40 subjects
who had smoked ,5 pack years and had stopped at least

Abbreviations: AR, amphiregulin; BAL, bronchoalveolar lavage; BDNF,
brain-derived neurotropic factor; BMI, body mass index; BODE index,
body mass index (B), degree of obstruction (O), perception of dyspnoea (D)
and exercise capacity (E); COPD, chronic obstructive pulmonary disease;
FDR_p, false discovery adjusted p value; FEV1, forced expiratory volume in
1 s; IFNc, interferon c; IL, interleukin; MMP, metalloproteinase; 6MWD, 6-
minute walk distance; bNGF, nerve growth factor b; PLS-DA, partial least
squares discriminant analysis; PMP, protein microarray platform; RCA,
rolling cell amplification; TGFa, tissue growth factor a; TIMP-1, tissue
inhibitor of metalloproteinase 1; TLCO, carbon monoxide transfer factor;
TNFa, tumour necrosis factor a; VEGF, vascular endothelial growth factor
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20 years previously or who had always been non-smokers. All
controls had a ratio of FEV1 to forced vital capacity (FVC) of
.0.7 and FEV1 .70% predicted. Participants were .35 years of
age and patients with COPD had to be clinically stable and
without exacerbations for at least 3 months. Subjects with a
history of asthma or atopy, conditions precluding performance
of the tests, and a systemic infection or an inflammatory
process that could be associated with abnormal biomarker
profile were excluded. All patients were followed for 1 year and
were stratified according to smoking history into ex-smokers
(never smoked or ex-smokers for .15 years and ,20 pack-
years) and active smokers. The controls were frequency
matched according to sex, age and smoking history (table 1).

The pulmonary function tests were measured according to
ATS standards17 and the BODE index was calculated as
previously reported.15 Exacerbations were defined as episodes
of increased dyspnoea, sputum or cough lasting .24 h and
requiring treatment with antibiotics and/or corticosteroids.18

After follow-up for 1 year, patients were stratified into no
exacerbations (n = 12), ,2 exacerbations (n = 12) and >2
exacerbations (n = 15).

Specimen collection
Blood samples were drawn, centrifuged and the serum frozen
at –80 C̊. Rolling cell amplification (RCA) immunoassay was
performed by Molecular Staging Inc (MSI, New Haven,
Connecticut, USA) using a protein microarray platform that

measured levels of 143 analytes (see table S1 available online at
http://thorax.bmj.com/supplemental) on five separate
arrays.19 20 After incubating and washing the serum samples
on microarrays, the captured proteins were detected by specific
biotinylated second antibodies and a universal anti-biotin
antibody was bound to the secondary antibodies. The anti-
biotin antibody contained an oligonucleotide DNA primer used
for amplification. During the process, a circular DNA hybridises
to the oligonucleotide DNA primer in the presence of DNA
polymerase and fluorescent nucleotides to generate a signal.
Following RCA, the slides were scanned (L200 scan, TECAN,
Durham, North Carolina, USA) using a proprietary software.
The fluorescence intensity of microarray spots was analysed
and the resulting mean intensity values were measured. Dose-
response curves for the biomarkers were determined with
increasing intensity indicating increasing analyte concentra-
tion.

Data analysis
A more complete discussion of the analysis used in this study is
available in the online supplement at http://thorax.bmj.com/
supplemental. In summary, two independent statistical
approaches were used: (1) we tested the distribution of
biomarkers for an association with COPD by univariate analysis
adjusting for multiple comparisons using false discovery rate
analysis;21 and (2) we used a variable clustering (VARCLUS)
tool which divides the biomarkers into non-overlapping
unidimensional groups or clusters,22 a process similar to factor
analysis. Each cluster’s predictive value was determined by
computing the partial regression coefficient of individual
cluster centroids with COPD using partial least squares
discriminant analysis (PLS-DA). After the initial analysis, we
selected a group of 24 biomarkers from those clusters that
showed a significant association with the diagnosis of COPD
(clinical history and presence of airflow limitation). The
biomarkers were chosen to reflect a variety of pathobiological
mechanisms relevant to the disease process. The resultant panel
of biomarkers was then tested for strength of association with
variables known to predict outcome in COPD, including
transfer factor for carbon monoxide (TLCO),23 6-minute walk
distance (6MWD), the BODE index and exacerbation fre-
quency.

Table 1 Cases and controls stratified by exacerbation
frequency and smoking status

Never/ex-
smoker

Active
smoker Total

COPD
Group 1 (no exacerbations) 12 4 16
Group 2 ((2 exacerbations/
year)

12 4 16

Group 3 (.2 exacerbations/
year)

15 0 15

Controls 40 8 48

Table 2 Basic characteristics of patients with COPD and controls*

Variable
COPD (n = 47)
M = 28/F = 19

Controls (n = 48)
M = 29/F = 19

T test for independent
samples (p value)

Age 64 (8) 64 (7) NS
BMI (kg/m2) 26.6 (5.2) 27.6 (4.8) NS
Smoking history (pack-years) 70 (40) 23 (3) ,0.001
Pre-bronchodilator FEV1 (l) 0.87 (0.33) 2.46 (0.61) ,0.001
Pre-bronchodilator FEV1 (% predicted) 32 (10) 90 (15) ,0.001
Post-bronchodilator FEV1 (l) 0.94 (0.36) NA
Post-bronchodilator FEV1 (% predicted) 35 (11) NA
TLC (l) 7.00 (1.57) 5.33 (1.48) ,0.001
TLC (% predicted) 126 (2) 95 (19) ,0.001
RV (l) 4.46 (1.36) 2.07 (0.81) ,0.001
RV (% predicted) 211 (60) 96 (33) ,0.001
TLCO (ml/min/mmHg) 9.9 (3.8) 19.5 (6) ,0.001
TLCO (% predicted) 48 (5) 92 (24) ,0.001
MRC dyspnoea 2.5 (0.8) 0.08 (0.3)* ,0.001
6MWD (m) 365 (109) 540 (95) ,0.001
SGRQ composite score 53 (18) 4.8 (2.6)* ,0.001
BODE index 4.7 (1.8) 2.2 (1.8) ,0.001

NA, not available; NS, not significant; BMI, body mass index; FEV1, forced expiratory volume in 1 s; TLC, total lung
capacity; RV, residual volume; TLCO, carbon monoxide transfer factor; MRC, Medical Research Council; 6MWD, 6-
minute walk distance; SGRQ, St George’s Respiratory Disease Questionnaire; BODE, body mass index (B), obstruction
(O), dyspnoea (D) and exercise endurance (E).
Data presented as mean (SD).
*Log transformation was performed on variables with non-normal distribution.
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RESULTS
Study population
The characteristics of the patients and the controls are
summarised in table 2. As expected, the patients had higher
smoking exposure (pack-years), significant airflow limitation,
higher lung volumes, worse BODE scores and health-related
quality of life than controls. Patients and controls were of
similar age, sex and BMI.

Biomarkers that distinguish between patients with
COPD and controls
In the univariate analysis, 43 biomarkers were identified that
differed between patients and controls. To adjust for multiple
analysis, these were filtered by false discovery rate adjusted p
value (FDR_p) of ,0.015 (table 3).

The second approach (variable cluster analysis) resulted in 30
different clusters, 19 of which correlated significantly with the
diagnosis of COPD. We selected biomarkers from among these 19
clusters to reflect a variety of pathophysiological mechanisms
considered relevant to COPD. In order to enrich the exploratory
value of the panel, two biomarkers—prolactin and plasminogen
activator inhibitor type 2 (PAI-II)—were included despite lack of

an obvious disease association. The selected panel biomarkers are
shown in table 4 and their full description is given in the online
supplement available at http://thorax.bmj.com/supplemental.

Associations of the biomarker panel with FEV1, TLCO,
6MWD, BODE index, BMI and exacerbation rate in
patients with COPD
In the patients with COPD, the selected biomarkers tested in
the panel correlated significantly with FEV1 (fig 1). The
findings were replicated for the TLCO (fig 2), the BODE index
(fig 3) and the exacerbation rate (fig 4).

We also observed a correlation with the 6MWD while there
was no correlation with BMI (not shown). The same selected
biomarkers are shown for each analysis. Most of the markers
were associated with all of the physiological indicators of
disease, but the strength of the association differed from
outcome to outcome as did the rank order of each biomarker.

DISCUSSION
This study had two important findings: (1) that PMP
technology can be useful in identifying potential biomarkers
in patients with COPD; and (2) that a pattern of systemic

Table 3 Statistical comparison of biomarkers in patients with COPD and controls

Sequence Protein ID

Controls COPD patients

T ratio FDR_p p ValueMean SD Mean SD

1 MMP-9 4129.05 1524.12 6298.61 2437.93 5.07 0.00028 0.00000
2 Eotaxin-2 3821.17 2786.26 6897.35 4303.97 4.37 0.00078 0.00003
3 MMP-7 860.72 340.62 1431.51 1021.53 4.37 0.00078 0.00003
4 MMP-10 1111.17 445.91 1813.39 1424.64 4.54 0.00078 0.00002
5 TARC 178.84 124.23 386.29 541.28 4.44 0.00078 0.00002
6 TNF-a 83.24 19.97 112.99 48.21 4.40 0.00078 0.00003
7 BDNF 293.34 347.45 992.07 1348.16 4.17 0.00106 0.00007
8 GCP-2 100.41 26.19 131.26 45.91 4.16 0.00106 0.00007
9 MIF 702.08 165.77 1062.19 931.81 4.15 0.00106 0.00007

10 NE 3951.64 925.28 4917.56 1284.20 4.18 0.00106 0.00006
11 IL-1-sR1 173.18 89.25 264.36 157.92 4.04 0.00144 0.00011
12 MMP-8 7479.60 5112.69 14511.88 9305.13 4.00 0.00151 0.00013
13 TIMP-1 2885.88 1477.78 4677.85 2424.25 3.91 0.00197 0.00018
14 AR 117.76 30.93 146.85 47.46 3.77 0.00253 0.00029
15 IL-10rb 689.21 200.70 874.60 287.25 3.70 0.00253 0.00037
16 IL-12p40 130.59 41.13 162.29 54.10 3.69 0.00253 0.00037
17 IL-1ra 176.72 53.05 221.43 61.74 3.80 0.00253 0.00026
18 IL-2rb 275.40 92.33 366.01 155.99 3.73 0.00253 0.00033
19 IL-8 209.52 80.41 278.40 101.25 3.79 0.00253 0.00027
20 I-TAC 86.84 51.75 138.41 95.26 3.71 0.00253 0.00036
21 VEGF 127.21 40.98 168.05 65.40 3.70 0.00253 0.00036
22 VEGF-D 263.56 142.27 361.02 186.09 3.56 0.00377 0.00058
23 CD30 158.85 69.99 210.88 102.48 3.48 0.00457 0.00077
24 Eotaxin 235.07 80.48 282.00 65.23 3.49 0.00457 0.00075
25 MCP-1 633.02 303.92 936.95 584.67 3.44 0.00496 0.00087
26 IL-1a 91.98 31.06 113.74 38.44 3.41 0.00508 0.00096
27 Prolactin 925.25 244.88 1274.07 838.37 3.42 0.00508 0.00093
28 TNF-R1 525.09 455.95 800.09 616.36 3.35 0.00597 0.00117
29 IL-1b 98.21 34.65 124.21 53.06 3.31 0.00662 0.00134
30 BLC 192.76 89.61 294.84 240.72 3.29 0.00675 0.00142
31 FGF-4 347.42 95.24 434.21 169.61 3.26 0.00719 0.00156
32 MPIF-1 624.64 331.03 825.75 398.73 3.17 0.00932 0.00209
33 IGFBP-4 6118.33 1188.73 7136.63 2703.80 3.15 0.00962 0.00222
34 CTACK 3480.02 1367.85 4745.23 3090.78 3.12 0.01005 0.00239
35 HCC-1 1201.77 352.24 1549.81 870.31 3.07 0.01130 0.00276
36 Eotaxin-3 229.35 114.73 609.19 2006.73 3.06 0.01138 0.00291
37 IL-17 343.13 69.30 390.90 84.96 3.05 0.01138 0.00302
38 TGF-a 210.31 107.82 595.09 2168.58 3.05 0.01138 0.00299
39 MIP-1d 2094.72 836.45 2878.11 1762.62 2.99 0.01326 0.00362
40 EGF 158.28 64.86 216.59 164.16 2.93 0.01458 0.00428
41 M-CSF 78.34 24.86 96.89 35.82 2.93 0.01458 0.00422
42 Protein C 8112.46 1788.08 9087.41 1603.96 2.94 0.01458 0.00412
43 HCC-4 8572.51 2501.97 10071.78 2581.08 2.90 0.01498 0.00461

The protein markers were filtered by false discovery adjusted p-value (FDR_p) of 0.015. The FDR adjusted p value
(sometimes called just FDR) is a practical way of dealing with multiple testing issues and can be interpreted as estimated
proportion of false positives in the list. The T ratio was computed from common log scale. The names of all the analytes
are given in the online supplement available at http://thorax.bmj.com/supplemental.
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biomarkers identified in these patients can be associated with
different clinical variables known to predict disease outcome
including degree of airflow limitation, lung transfer factor,
functional capacity, the BODE index and exacerbation frequency.

Several groups have shown an increase in a number of
circulating inflammatory biomarkers in COPD,24–26 suggesting
that it might be possible to characterise patients with COPD
using systemic biomarkers. To address this question we used a
novel technology that simultaneously evaluated analytes cover-
ing diverse potential processes including inflammation, chemo-
attraction, cell activation, tissue destruction and repair. Based
on a collaborative effort of statistical results and scientific
plausibility, a subset of 24 biomarkers was identified and
selected for subsequent testing against a variety of clinically
important parameters. Many studies have been published on
the association between a specific marker and COPD disease
status, with both positive and negative results being reported.24–

31 The disagreement in results can be attributed to different
factors, including the heterogeneity of COPD phenotypes, low
sample size, or the use of different methodologies and assays.
The development of a panel of biomarkers addressing pre-
conceived multiple pathophysiological pathways may provide a
more specific tool to serve as an intermediate end point
reflecting the natural history of the disease.

One obvious limitation of this preliminary dataset is that the
biomarkers identified are limited by the pool of analytes that
were available for the primary assessment. Clearly, use of an
‘‘open’’ proteomic platform would give information about a
much broader range of proteins and might provide additional

Table 4 Biomarkers selected for analysis

Pathobiological function

Chemoattractants I-TAC, eotaxin-2, MPIF-1, MCP-1, MIP-1b, IL-8,
PARC

Inflammation IL-15, IL-1ra, IL-17, TNFa, TNF R1, IFNc, IL-12
p40, IL-2Rc

Destruction and repair TGFa, VEGF, AR, BDNF, bNGF, MMP-9, TIMP-1
Novel markers PAI-II, prolactin

The biomarkers were selected from clusters statistically associated with the
diagnosis of COPD and thought to have known or potential significance in
the pathobiology of COPD.
AR, amphiregulin; BDNF, brain-derived neurotrophic factor; bNGF, b-nerve
growth factor; IFNc, interferon c; IL, interleukin; IL-1ra, interleukin 1
receptor antagonist; IL-2Rc, interleukin 2 receptor gamma; I-TAC, interferon
c-inducible T cell a chemoattractant; MCP-1, monocyte chemotactic protein
1; MIP-1b, macrophage inflammatory protein 1b; MMP-9, matrix
metalloproteinase 9; MPIF-1, myeloid progenitor inhibitory factor 1; PAI-II,
plasminogen activator inhibitor II; TGFa, transforming growth factor a;
TIMP-1, tissue inhibitors of metalloproteinases 1; TNFa, tumour necrosis
factor a; TNF R1, tumour necrosis factor receptor I; VEGF, vascular
endothelial growth factor.

Figure 1 Correlation of the selected
biomarker panel with forced expiratory
volume in 1 s (FEV1) in patients with COPD.
The size of the bar in the graph indicates the
magnitude of the regression coefficients and
the 95% confidence interval is also indicated
for each bar. If the confidence interval
includes zero, the associated biomarker is
‘‘not significant’’. The overall regression
model was significant by a permutation test
(p,0.01). The standardised coefficients for
this and for figs 2, 3 and 4 are for scaled and
centred markers and scaled response. These
coefficients can be used to interpret the
influence of the markers on the clinical
response. The standardised regression
coefficient for each marker measures the
effect of the marker on the clinical response
adjusted for all other markers in the
regression (partial correlation). The
coefficients can also be compared across the
clinical responses since they are scaled.
Definitions of the biomarkers are given in the
footnote to table 4.

Figure 2 Correlation of the selected
biomarker panel with carbon monoxide
transfer factor (TLCO) in patients with COPD.
The size of the bar in the graph indicates the
magnitude of the regression coefficients and
the 95% confidence interval is also indicated
for each bar. If the confidence interval
includes zero, the associated biomarker is
‘‘not significant’’. The overall regression
model was significant by a permutation test
(p,0.01). Definitions of the biomarkers are
given in the footnote to table 4.
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insights into biomarker selection and disease processes.
However, a recent report16 using a panel developed from the
one reported here shows that the panel as developed is valid
and capable of reflecting changes induced by exacerbations.
Recognising the fact that the discussion is valid only for the
analytes explored, our findings may help to shed light on the
underlying pathogenetic processes involved in this disease.

It has been proposed that various proteases break down lung
connective tissue components to cause emphysema,5 6 leading
to aberrant remodelling and/or degradation of the extracellular
matrix. In our study, several proteins (table 3) related to the
protease-antiprotease mechanism were clearly different
between patients with COPD and controls. Thus, metallopro-
teinases 7, 8, 9 and 10 (MMP-7, MMP-8, MMP-9 and MMP-10)
were among the proteins with large differences between
groups. Of these, MMP-9 showed the strongest association
with FEV1 and TLCO, which is interesting because MMP-9 has
been implicated in the experimental genesis of emphysema.32 33

The tissue inhibitor of metalloproteinase 1 (TIMP-1), a
collagenase inhibitor, was also different between patients and
controls, providing evidence that the final expression of the
disease may rest upon the appropriate balance of the system.33

Differences were also found in enzymes other than the
metalloproteinases that are related to tissue destruction, as well
as proteins related to repair, that deserve some comments. While
the fold increase of neutrophil elastase in COPD was not as
great as that found for the metalloproteinases, the difference was
still statistically significant. Previous studies of experimental

emphysema produced by pancreatic or neutrophil elastase showed
that increased levels of elastase enzymes lead to the degradation of
connective tissue components and, thus, enlargement of distal
airspaces.34 While both elastin and collagen are rapidly re-
synthesised in these animal models and mRNA levels for both
are increased, the connective tissue remodelling process is
ineffective and lung mechanical properties remain abnormal.35

The differences in tissue growth factor alpha (TGFa),
amphiregulin (AR), brain-derived neurotropic factor (BDNF)
and nerve growth factor b (bNGF) and their association with
low FEV1 and TLCO (figs 1 and 2) suggest that connective tissue
remodelling continues even in severe advanced COPD in
humans, but the process fails effectively to restore the
mechanical properties of the diseased lung. The role of TGFa
is something of a mystery. Mice genetically manipulated to
overexpress TGFa develop emphysema postnatally,36 yet an in
vitro model of alveolar re-epithelialisation showed that TGFa
induced faster wound repair.37 The presence of significant
associations between BDNF and lung function and the BODE
index (fig 3) is particularly interesting. Recent evidence
indicates that BDNF decreases conversion from oxygen to
hydrogen peroxide in experimental cell cultures,38 suggesting a
role in the modulation of oxidative stress, and makes this an
interesting marker to study. Furthermore, similar to results
seen with AR, exogenous BDNF can protect cells from serum
deprivation-induced cell death.39

It has been suggested that angiogenesis and apoptosis of the
alveolar wall may have a role in emphysema. While little is

Figure 3 Correlation of the selected
biomarker panel with the BODE index in
patients with COPD. The size of the bar in the
graph indicates the magnitude of the
regression coefficients and the 95%
confidence interval is also indicated for each
bar. If the confidence interval includes zero,
the associated biomarker is ‘‘not
significant’’. The overall regression model
was significant by a permutation test
(p,0.01). Definitions of the biomarkers are
given in the footnote to table 4.

Figure 4 Correlation of the selected
biomarker panel with the exacerbation rate
in patients with COPD. The size of the bar in
the graph indicates the magnitude of the
regression coefficients and the 95%
confidence interval is also indicated for each
bar. If the confidence interval includes zero,
the associated biomarker is ‘‘not
significant’’. The overall regression model
was significant by a permutation test
(p,0.01). Definitions of the biomarkers are
given in the footnote to table 4.
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known about the role of the EGF family member AR in the
aetiology of COPD, one study has found that AR can inhibit
apoptosis of non-small cell lung cancer cell line.40 Blockade of
vascular endothelial growth factor R2 (VEGF-R2) receptor in
rats induces apoptosis of the alveolar cell wall and results in an
emphysema-like pathology.41 42 Several studies have found
decreased expression of VEGF in induced sputum or bronch-
oalveolar lavage (BAL) fluid from patients with obstructive
lung disease in comparison with normal subjects.43 44 These
studies have also shown a direct association between the
reduction in VEGF and FEV1. While our study showed an
increase in VEGF serum content that was inversely associated
with FEV1, this difference could be due to differential
expression of VEGF in lung tissue and serum. Studies of
VEGF expression in human lung tissue by immunohistochem-
istry have shown increased VEGF in pulmonary and airway
smooth muscle in subjects with COPD that correlated with
decreased FEV1.45 Furthermore, patients with cystic fibrosis
show an inverse relationship in the level of VEGF in serum and
BAL fluid compartments. These patients had a higher level of
VEGF in serum and a lower level of VEGF in BAL fluid
compared with controls.46 The role of apoptosis and its
relationship to inflammation and repair seem supported by
our findings.

Current thinking places inflammation at the centre of the
pathogenetic mechanisms of COPD. The inflammation is char-
acterised by increased numbers of alveolar macrophages, neu-
trophils and T lymphocytes, together with the release of multiple
inflammatory mediators that result in a high level of oxidative
stress. Multiple proteins related to inflammation were detected in
the serum of patients with COPD (table 4). These included
interleukin (IL)-12, IL-15, IL-17, IL-1 receptor antagonist (IL-1ra),
tumour necrosis factor a (TNFa), tumour necrosis factor receptor
1 (TNF R1), interferon c (IFNc), IL-12p40 and IL-2Rc. There is
experimental evidence for the participation of all of these proteins
in the inflammation that characterises COPD, and raises the
possibility that the systemic manifestations of COPD may be
intimately related to this process. Indeed, the association between
inflammatory markers and exacerbation rate (fig 4) suggests that
this manifestation of the disease could be modulated by
amplification of the inflammatory cascade. In this regard,
eotaxin-2—which had one of the strongest associations with the
exacerbation rate in our patients—is a strong chemotactic
cytokine for eosinophils,47 cells that have been found to be
increased in airway biopsy tissue from patients with COPD
exacerbations.48 Indeed, although the inflammatory pathways of
COPD appear to be more related to lymphocytes expressing a T
helper 1 (Th1) bias,49 a high level of Th2 chemokines have been
reported in experimental models of emphysema induced by
cigarette smoking.10

There were several novel proteins that differed between
patients with COPD and controls. We selected two of them—
plasminogen activator inhibitor type 2 (PAI-II) and prolactin—
because of their presence in one of the eight clusters with the
strongest association with COPD. PAI-II belongs to the serpine
class of protease inhibitors and is involved in the thrombogenic
cascade. Known to be produced by activated monocytes in the
peripheral blood,50 this protein (together with PAI-I) may have
a role in tissue remodelling in airways disease.51 These data
warrant further investigation to explore the possible role of
serpines in COPD.52 Prolactin upregulation presents an enigma.
Prolactin receptor has recently been reported to be upregulated
in the lungs of mice exposed to lipopolysaccharide,53 and
prolactin can activate the inflammatory natural killer (NF)-kb
cascade in pulmonary fibroblasts.54 It is therefore plausible that
prolactin may play a role in the inflammatory environment in
COPD.

There are a number of important limitations to our study. Not
all of the possible proteins that participate in the complex
mechanism of COPD were tested. Absent were some with a
known relationship to COPD such as C-reactive protein and
fibrinogen, and some of potential importance such as MMP-12.
The reason for their omission was not any preconceived
mechanistic bias. Our study was designed as a proof of
principle rather than a totally comprehensive evaluation of all
of the markers that could potentially be explored. Many
complex diseases have components related to inflammation,
tissue remodelling, apoptosis and chemoattraction of specific
cell types. This observation suggests that a panel of analytes
might provide insight into the pathobiology of the disease
under study in the absence of, or in conjunction with, novel
‘‘disease-specific’’ biomarkers. We also acknowledge that not
all phenotypic expressions of COPD were analysed; for example,
it would have been interesting to have related the biomarkers to
changes in the CT scan of patients with emphysema, but
unfortunately the technique needed to quantitatively express
CT changes was not available. However, the TLCO does relate to
the phenotypic expression of emphysema. We believe that this
study represents a proof of concept and opens a window for
hypothesis testing and perhaps the discovery of yet to be
described pathway interactions and targets.

For the correlation analyses we attempted to address the
issue of many proteins representing the same pathophysiolo-
gical mechanism by empirically grouping them according to
their statistical strength and their presumed pathobiological
role. We acknowledge the latter to be empirical, but it is based
on the data currently available and aimed at simplifying the
prospective testing. Furthermore, the inclusion of too many
proteins may be intellectually desirable but may cause
important cross-correlative noise that may actually cloud the
interpretation of the results. We also acknowledge that the
patients included in the study do not represent the large
population of patients with COPD since all of them had severe
disease. However, the patients included represent those likely to
be seen by clinicians and to benefit from new therapeutic
strategies. On the other hand, this study is unique in that
patients and controls were phenotypically well characterised
and matched by age, sex and—very importantly—by smoking
habits to minimise the hypothetical influence of these
confounding factors. Indeed, the inclusion or exclusion of
smokers in each of the groups did not affect the results. In
addition, the evaluation of important associations of the panel
markers with clinical markers of COPD such as the BODE index
and its individual components offers a more comprehensive
picture of the value of the technique. The association with
exacerbation frequency is particularly interesting because
exacerbations constitute an extremely important outcome and
one where elucidation of the factors that may help prevent their
occurrence would prove extremely useful. Finally, we also
acknowledge that the stability of biomarker levels in serum
samples is not well characterised and that we did not repeat the
tests at different times. However, the recent report by Hurat
and colleagues16 using the panel derived from this study
independently validated our findings.

In summary, using a serum PMP, we have identified a
biomarker profile whose expression levels can distinguish patients
with COPD from smokers and non-smokers without COPD. We
have also found an association between the level of selected
biomarkers and lung function, the degree of airflow limitation and
TLCO, a marker of lung tissue destruction. Furthermore, we
documented an association between the expression of the serum
biomarkers and the integrated local and systemic manifestations
of the disease as represented by the functional capacity and the
BODE index. The expression of biomarkers was also associated

600 Pinto-Plata, Toso, Lee, et al

www.thoraxjnl.com

 on S
eptem

ber 24, 2021 by guest. P
rotected by copyright.

http://thorax.bm
j.com

/
T

horax: first published as 10.1136/thx.2006.064428 on 13 M
arch 2007. D

ow
nloaded from

 

http://thorax.bmj.com/


with the exacerbation rate, crucial events in the natural course of
the disease. The ease of sampling of peripheral blood and the
continuing improvement and availability of multiplexed immu-
noassay technology should provide us with a new tool for research
in this deadly disease.

Further information is given in the online supplement
available at http://thorax.bmj.com/supplemental.
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Statistical Appendix 

Overview of Statistical Methods Used for Biomarker Selection 

There is no standard or agreed upon statistical methods used for ranking and selection of 

biomarkers related to a disease or a drug. Many different methods are used and they can 

potentially yield different rankings and selections.  There are two different types of 

methods in general – one, an univariate method and the other is a multivariate method.   

Univariate Method 

Univariate methods consider one biomarker at a time without considering association 

with others.  The most frequently used simple t-test belongs to this category.  For a 

disease marker selection, for example, t-test compares two group means between the 

normal and diseased samples.  This is equivalent to the use of Pearson’s correlation 

coefficient between the biomarker expression (“x”) and an indicator variable (“y”) coded 

as 0’s for normal and 1’s for diseased samples.  The same result can be obtained by 

considering the simple linear regression between the “x” and “y” and test the regression 

coefficients for significance (i.e. whether the regression coefficient is significantly 

different from zero).  The statistic used in this model is another t statistic formed by the 

ratio of the estimated regression coefficient to its standard error.  The actual ranking of 

biomarkers can be done by corresponding p-values and some cut point can be used for 

the final selection. The technique used in this study  also adjust the p-values for the 

multiplicity of the testing using the concept of false discovery rate (FDR). The idea of 

FDR is to control the average proportion of false positives in the selected list of 

biomarkers. In this simple linear regression setting, the regression coefficient is 

proportional to the Pearson’s correlation mentioned above and essentially tests the same 



thing – the association between a biomarker and the disease ignoring the association with 

other biomarkers.  In other words, Univariate analysis is based on the marginal 

correlation between a marker and the clinical endpoint. 

Multivariate 

Multivariate methods in general consider all the biomarkers in the experiment together in 

a single model and include many different regression and classification method.  These 

tools are called supervised learners and also called a wrapper based approach in the 

machine learning community. The types of regression (or classification) models can be 

either linear or nonlinear. Ordinary least squares (OLS) and logistic regressions are 

frequently used linear models. Decision trees and neural networks are examples of 

nonlinear models.  Let’s consider as an example the selection of disease markers using a 

multiple linear regression model. The regression coefficient in this case essentially 

measures the partial correlation between a biomarker and the disease adjusted for all the 

other biomarkers.  This is the reason why multivariate models are preferred since the 

partial correlation takes into account the association with other markers.  We know that 

all the biomarkers are related and their associations approximate the biological network 

in the disease pathways. It is well known that partial correlation is generally better 

measure of direct association between the two markers than the marginal correlation in 

the association network modeling.  Generally nonzero marginal correlation can mean 

either direct association or effects of other indirect variables. 

 

Ordinary least squares or logistic regression, however, can have a serious problem 

especially when the data is of high dimensional and as a result the biomarker expressions 



are highly correlated.  This is a well known multi-collinearity problem for linear 

regression and OLS’ regression coefficients can be very misleading since their standard 

errors are so large that sometimes they even have wrong signs in their estimates.  The 

same is true for logistic regression for classification and we can not rely on their 

coefficients and p-values for the ranking and selection of the biomarkers.  These models 

are unstable under multi-collinearity and are of high variance structure. 

 

A shrinkage method of estimation such as principal component regression (PCR), partial 

least squares (PLS) and ridge regression (RR) can bypass this multi-collinearity problem 

by regularization of the estimation process (1).  They may introduce a small bias but can 

reduce the variance of the estimated coefficients appreciably and hence are more stable.  

We have used partial least squares (PLS) regression and its discriminant analysis (PLS-

DA) to deal with high dimensional biomarker selection and found them very competitive 

with other methods of shrinkage estimation.  The PLS-DA is simply PLS applied to a 

categorical response variable. For a binary response, it is typically coded as 0 or 1 but 

other scaling of the response does not alter the ranking of the regression coefficients and 

hence interpretation of the result remains the same. The software package SIMCA (2) 

implemented PLS and PLS-DA in a very user friendly manner with an excellent 

graphical user interface. We found the package very useful for high dimensional data 

analysis in general.  There is a recent study comparing different shrinkage methods and 

currently active research is being done to improve the accuracy and flexibility of ridge 

regression to high dimensional biomarker selection (3). 

 



Nonlinear models such as decision trees and neural networks can improve the accuracy of 

their predictions by adopting nonlinearity but are of high variance structure and can be 

unstable as well.  Decision tree algorithms are unstable at times since variable selection is 

done in a stepwise manner and is of discrete nature (greedy algorithm).   

This can be true for any stepwise variable (biomarker) selection algorithms. 

Neural networks use many parameters in the estimation process (in many cases 

overparametrized) and a trade off can be again instability of the model.  One interesting 

computer intensive method called Random Forest (4) is based on the bootstrap 

aggregation of the many (> 500 for example) decision tree models and is a very 

promising tool for high dimensional biomarker selection.  Our limited experience showed 

that the PLS coefficients gave similar rankings of the biomarkers to the Random Forest in 

many cases of high dimensional data. 

Model Validation. 

Validation of a prediction model can be done externally on a separate test data or 

internally using a cross validation.  Typically cross validation is applied to come up with 

a best performing model e.g. to minimize a performance measure such as predicted 

residual sums of squares for a regression model.  Once a cross validated performance is 

obtained, the statistical significance of the performance measure is obtained by a 

permutation test.  The permutation test in this case is to randomly permute the labels of 

the response part of the data to assess the significance of the actual performance measure 

against those obtained from random permutations of labels.  If none of the   models from 

the 100 different random permutations of the labels of the response showed better 

performance than the model from original data then we can conclude the model is 



significant at P less than 0.01. Our approach of model validation was based on combining 

the ideas of the cross validation and the permutation test.   

 

Data analysis strategy used in the stusy. 

The ranking and selection of biomarkers is not a pure statistical exercise but should be a 

collaborative effort between statisticians and scientists.  We could obtain a ranking of 

biomarkers by a univariate statistical test and select a few in the top of a list or use a cut 

point based on p-values.  In many cases, people also adjust the p-values for the 

multiplicity of the testing but recently the concept of false discovery rate (FDR) became 

popular for the decision making, which professor Efron calls one of the genuinely useful 

new ideas (5). The idea of FDR is to control the average proportion of false positives in 

the selected list of biomarkers. However selecting biomarkers solely based on a 

univariate ranking may ignore the associations among the biomarkers and may end up 

with markers that have all similar functions.  In order to select diverse set of markers for 

COPD our approach of selecting a panel of predictive biomarkers for COPD was to 

cluster the biomarkers into a few clusters/ groups (say 30) first and then evaluate the 

predictiveness of each cluster for COPD.   Then we would select a few representative 

biomarkers from each group of the predictive clusters.  The particular clustering tool we 

have used was Variable Clustering (VARCLUS) procedure in SAS (6).  The VARCLUS 

procedure attempts to divide a set of variables into non-overlapping clusters in such a 

way that each cluster can be interpreted as essentially unidimensional.  Underlying 

computation of VARCLUS is very similar to a factor analysis and roughly a factor is 

equivalent to a cluster in VARCLUS.  The predictiveness of each cluster was then 



determined by computing partial correlation of each cluster centroid with COPD given all 

the other markers using partial least squares discriminant analysis (PLS-DA).  Each of the 

regression coefficients from the PLS-DA is essentially equivalent to the partial 

correlation between the cluster centroid and the response.  In this case the response is 

coded as a binary indicator variable and as long as the indicator variable has two distinct 

values such as 0 for control or 1 for COPD patient it does not matter what the scale is. 

Hence a regression coefficient essentially measures the partial correlation between an 

average biomarker in a cluster with COPD that is adjusted for all other cluster averages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Description of the analytes included in the micro-arrays. 

The total number of analytes included on arrays 1-5. Note data from CRP on array 5 was 

not useable due to CRP levels well above the upper detection limit of the assay which 

resulted in a ‘Hook effect”.  

Array 1 analytes 

 Analyte Name 
1 ANG Angiogenin 
2 BLC (BCA-1) B-lymphocyte chemoattractant 
3 EGF Epidermal growth factor 
4 ENA-78 Epithelial cell-derived neutrophil-activating peptide 
5 Eot Eotaxin 
6 Eot-2 Eotaxin-2 
7 Fas Fas (CD95) 
8 FGF-7 Fibroblast growth factor-7 
9 FGF-9 Fibroblast growth factor-9 
10 GDNF Glial cell line derived neurotrophic factor 
11 GM-CSF Granulocyte macrophage colony stimulating factor 
12 IL-1ra Interleukin 1 receptor antagonist 
13 IL-2 sRα Interleukin 2 soluble receptor alpha 
14 IL-3 Interleukin 3 
15 IL-4 Interleukin 4 
16 IL-5 Interleukin 5 
17 IL-6 Interleukin 6 
18 IL-7 Interleukin 7 
19 IL-8 Interleukin 8 
20 IL-13 Interleukin 13 
21 IL-15 Interleukin 15 
22 MCP-2 Monocyte chemotactic protein 2 
23 MCP-3 Monocyte chemotactic protein 3 
24 MIP-1α Macrophage inflammatory protein 1 alpha 
25 MPIF Myeloid progenitor inhibitory factor 1 
26 OSM Oncostatin M 
27 PlGF Placental growth factor 



Array 2 analytes 

 Analyte Name 
1 AR Amphiregulin 
2 BDNF Brain-derived neurotrophic factor 
3 Flt-3 Lig fms-like tyrosine kinase-3 ligand 
4 GCP-2 Granulocyte chemotactic protein 2 
5 HCC4 (NCC4) Hemofiltrate CC chemokine 4 
6 I-309 I-309 
7 IL-1α Interleukin 1 alpha 
8 IL-1β Interleukin 1 beta 
9 IL-2 Interleukin 2 
10 IL-17 Interleukin 17 
11 MCP-1 Monocyte chemotactic protein 1 
12 M-CSF Macrophage colony stimulating factor 
13 MIG Monokine induced by interferon gamma 
14 MIP-1β Macrophage inflammatory protein 1 beta 
15 MIP-1δ Macrophage inflammatory protein 1 delta 
16 NT-3 Neurotrophin 3 
17 NT-4 Neurotrophin 4 
18 PARC Pulmonary and activation-regulated chemokine 
19 RANTES Regulated upon activation, normal T expressed and presumably 

secreted 
20 SCF Stem cell factor 
21 sgp130 Soluble glycoprotein 130 
22 TARC Thymus and activation regulated chemokine 
23 TNF-RI Tumor necrosis factor receptor I 
24 TNF-α Tumor necrosis factor alpha 
25 TNF-β Tumor necrosis factor beta 
26 VEGF Vascular endothelial growth factor 



Array 3 analytes 

 Analyte Name 
1 BTC Betacellulin 
2 DR6 Death receptor 6 
3 Fas Lig Fas ligand 
4 FGF acid (FGF-1) Fibroblast growth factor acidic 
5 Fractalkine Fractalkine 
6 GRO-β Growth related oncogene beta 
7 HCC-1 Hemofiltrate CC chemokine 1 
8 HGF Hepatocyte growth factor 
9 HVEM Herpes virus entry mediator 
10 ICAM-3 (CD50) Intercellular adhesion molecule 3 
11 IGFBP-2 Insulin-like growth factor binding protein 2 
12 IL-2 Rγ Interleukin 2 receptor gamma 
13 IL-5 Rα (CD125) Interleukin 5 receptor alpha 
14 IL-9 Interleukin 9 
15 Leptin/OB Leptin 
16 L-Selectin (CD62L) Leukocyte selectin 
17 MCP-4 Monocyte chemotactic protein 4 
18 MIP-3β Macrophage inflammatory protein 3 beta 
19 MMP-7 (total) Matrix metalloproteinase 7 
20 MMP-9 Matrix metalloproteinase 9 
21 PECAM-1 (CD31) Platelet endothelial cell adhesion molecule-1 
22 RANK Receptor activator of NF-kappa-B 
23 SCF R Stem cell factor receptor 
24 TIMP-1 Tissue inhibitors of metalloproteinases 1 
25 TRAIL R4 TNF-related apoptosis-inducing ligand receptor 4 
26 VEGF-R2 (Flk-1/KDR) Vascular endothelial growth factor receptor 2 
27 ST2 Interleukin 1 receptor 4 



Array 4 analytes 
  Analyte Name 
1 ALCAM Activated leukocyte cell adhesion molecule 
2 β-NGF beta-nerve growth factor 
3 CD27 CD27 
4 CTACK Cutaneous T-cell attracting chemokine 
5 CD30 CD30 
6 Eot-3 Eotaxin-3 
7 FGF-2 Fibroblast growth factor-2 (FGF-basic) 
8 FGF-4 Fibroblast growth factor-4 
9 Follistatin Follistatin 
10 GRO-γ Growth related oncogene gamma 
11 ICAM-1 Intercellular adhesion molecule 1 
12 IFN-γ Interferon gamma 
13 IFN-ω Interferon omega 
14 IGF-1R Insulin-like growth factor I receptor 
15 IGFBP-1 Insulin-like growth factor binding protein 1 
16 IGFBP-3 Insulin-like growth factor binding protein 3 
17 IGFBP-4 Insulin-like growth factor binding protein 4 
18 IGF-II Insulin-like growth factor II 
19 IL-1 sR1 Interleukin 1 soluble receptor I 
20 IL-1 sRII Interleukin 1 soluble receptor II 
21 IL-10 Rβ Interleukin 10 receptor beta 
22 IL-16 Interleukin 16 
23 IL-2 Rβ Interleukin 2 receptor beta 
24 I-TAC Interferon gamma-inducible T cell alpha chemoattractant 
25 Lptn Lymphotactin 
26 LT βR lymphotoxin-beta receptor  
27 M-CSF R Macrophage colony stimulating factor receptor 
28 MIP-3α Macrophage inflammatory protein 3 alpha 
29 MMP-10 Matrix metalloproteinase 10 
30 PDGF Rα Platelet-derived growth factor receptor alpha 
31 PF4 Stromal cell-derived factor beta 
32 sVAP-1 Soluble Vascular Adhesion Protein-1  
33 TGF-α Transforming growth factor alpha 
34 TIMP-2 Tissue inhibitors of metalloproteinases 2 
35 TRAIL R1 TNF-related apoptosis-inducing ligand receptor 1 
36 VE-cadherin Vascular Endothelial Cadherin 
37 VEGF-D Vascular endothelial growth factor-D 

 



Array 5 analytes 

 Analyte Name 
1 4-1BB (CD137) 4-1BB 
2 ACE-2 Angiotensin I converting enzyme-2 
3 AFP Alpha fetoprotein 
4 AgRP Agouti-related protein 
5 CD141 Thrombomodulin/CD141 
6 CD40 CD40 
7 CNTF Rα Ciliary neurotrophic factor receptor alpha 
8 CRP C-reactive protein 
9 D-Dimer D-Dimer 
10 E-Selectin E-selectin 
11 HCG Human chorionic gonadotrophin 
12 IGFBP-6 Insulin-like Growth Factor Binding Protein 6 
13 IL-12 (p40) Interleukin 12 p40 
14 IL-18 Interleukin 18 
15 LIF Rα (gp190) Leukemia inhibitory factor souble receptor alpha 
16 MIF Macrophage migration inhibitory factor 
17 MMP-8 (total) Matrix Metalloproteinase-8 
18 NAP-2 Neutrophil Activating Peptide 2 
19 Neutrophil elastase Neutrophil elastase 
20 PAI-II Plasminogen activator inhibitor-II 
21 Prolactin Prolactin 
22 Protein C Human Protein C 
23 Protein S Human Protein S 
24 P-Selectin P-Selectin 
25 TSH Thyroid stimulating hormone 
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