MECHANICAL VENTILATION

Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model

Jih-Shuin Jerng, Yu-Chiao Hsu, Huey-Dong Wu, Hong-Zhen Pan, Hao-Chien Wang, Chia-Tung Shun, Chong-Jen Yu, Pan-Chyr Yang

Background: Injurious mechanical ventilation can cause a pro-inflammatory reaction in the lungs. Recent evidence suggests an association of the renin-angiotensin system (RAS) with lung inflammation. A study was undertaken to investigate the role of the RAS in ventilator-induced lung injury (VILI) and to determine whether VILI can be attenuated by angiotensin converting enzyme (ACE) inhibition.

Methods: Male Sprague-Dawley rats were mechanically ventilated for 4 h with low (7 ml/kg) or high (40 ml/kg) tidal volumes; non-ventilated rats were used as controls. Lung injury and inflammation were assessed using the lung injury score, protein leakage, myeloperoxidase activity, pro-inflammatory cytokine (NF-kB) activity, and expression of RAS components. Expression of the RAS components in the lung was also assessed. Some rats were pretreated with the ACE inhibitor captopril (10 mg/kg) for 3 days or received a concomitant infusion with losartan or PD123319 (type 1 or 2 angiotensin II receptor antagonist) during mechanical ventilation to assess possible protective effects on VILI.

Results: In the high-volume group (n = 6) the lung injury score, bronchoalveolar lavage fluid protein concentration, pro-inflammatory cytokines, and NF-kB activities were significantly increased compared with controls (n = 6). Lung tissue angiotensin II levels and mRNA levels of angiotensinogen and type 1 and type 2 angiotensin II receptors were also significantly increased in the high-volume group. Pretreatment with captopril or losartan or PD123319 in the high-volume group attenuated the lung injury and inflammation (n = 6 for each group).

Conclusions: The RAS is involved in the pathogenesis of ventilator-induced lung injury. ACE inhibitor or angiotensin receptor antagonists can attenuate VILI in this rat model.

Mechanical ventilation (MV) is indispensable in the management of critically ill patients with respiratory failure. However, MV can also subject the lungs to substantial abnormal stretching stress, resulting in structural changes, impaired gas exchange and activation of the inflammatory process leading to ventilator-induced lung injury (VILI) and significant risk to the patients. Inflammatory cells and pro-inflammatory mediators are considered to play an important role in the pathogenesis of VILI. Evidence supporting the inflammation-inducing ability of injurious ventilation is also provided by the finding that mechanical stress can activate the inflammatory process via the nuclear factor (NF)-κB pathway and this can be attenuated by glucocorticoids. However, the exact mechanism by which MV triggers the inflammatory process remains unclear.

Recently, the involvement of the renin-angiotensin system (RAS) in the pathogenesis and evolution of inflammatory responses has received attention. On the basis of various experimental studies, the RAS is considered to be a key mediator of inflammation. Moreover, angiotensin II, the key factor of the RAS, has been shown in several in vitro studies to activate an inflammatory process by upregulation of the synthesis of pro-inflammatory cytokines and chemokines via the type 1 (AT1) and type 2 (AT2) angiotensin II receptors and subsequent activation of the NF-κB pathway. Systemic infusion of angiotensin II also activates NF-κB in vivo in rat kidneys. On the other hand, the RAS is involved in cell death. Angiotensin II induces apoptosis of pulmonary endothelial cells and alveolar epithelial cells. The apoptosis can be abrogated by angiotensin receptor antagonists or other angiotensin II blockers. Moreover, angiotensin II also plays an important role in the fibrotic response to acute lung injury by inducing transforming growth factor-α expression in the lungs. It is therefore likely that the RAS is highly involved in the development of lung injury with impaired pulmonary function. A recent paper suggests the concept that angiotensin converting enzyme (ACE) aggravates the severe acute lung failure induced by acid aspiration and showed that mice deficient for the ACE gene have markedly reduced disease. It is therefore considered that, in conditions that can lead to lung inflammation such as high-volume ventilation, the RAS may play an important role in the development of lung inflammation.

However, the role of the RAS in the activation of the inflammatory process associated with VILI and its molecular pathogenesis and the potential role of specific anti-inflammatory therapeutic agents remain uncertain. Therefore, we investigated the involvement of the RAS in VILI. In this study we demonstrated that the RAS plays an important role in the development of VILI and that pretreatment with an ACE inhibitor or concomitant treatment with angiotensin receptor antagonists can attenuate the lung injury in this animal model.

Abbreviations: ACE, angiotensin converting enzyme; ACE2, angiotensin converting enzyme 2; AT1, AT2, types 1 and 2 angiotensin II receptors; BAL, bronchoalveolar lavage; JNK1, c-Jun N-terminal kinase 1; MIP-2, macrophage inflammatory protein; MPO, myeloperoxidase; MV, mechanical ventilation; NF-κB, nuclear factor-κB; PGNA, proliferating cell nuclear antigen; PEEP, positive end-expiratory pressure; RAS, renin-angiotensin system; RT-PCR, reverse transcription and polymerase chain reaction; TNF-α, tumour necrosis factor α; VILI, ventilator-induced lung injury

See end of article for authors’ affiliations

Correspondence to: Professor P C Yang, Department of Internal Medicine, National Taiwan University Hospital, No 7 Chung-Shan South Road, Taipei 100, Taiwan; pcyang@ntu.edu.tw

Received 14 March 2006
Accepted 22 November 2006
Published Online First
17 January 2007

www.thoraxjnl.com
METHODS
Animal preparation, mechanical ventilation protocol and drug treatment
All experiments were performed after approval by the Institutional Animal Committee of the National Taiwan University College of Medicine.

Male Sprague-Dawley rats weighing 200–250 g were anaesthetised by intraperitoneal injection of urethane (1.3 g/kg). Tracheostomy was performed and the tracheostomy tube was then connected to a volume-controlled ventilator for small animals (New England Medical Instruments Inc, Medway, Massachusetts, USA). MV was applied using methods modified from the protocol described elsewhere.16 17 The animals were divided into the following three experimental groups: (1) non-ventilated controls; (2) treated with MV with a high tidal volume (40 ml/kg tidal volume, 3 cm H2O of positive end-expiratory pressure (PEEP), 20 breaths/min, room air); (3) treated with MV with a low tidal volume (7 ml/kg tidal volume, 3 cm H2O of PEEP, 100 breaths/min, room air). The control group only received the intraperitoneal injection of urethane. Mechanical ventilation was applied for 4 h and the peak airway pressure and mean arterial pressure were monitored throughout. Arterial blood gas analysis was performed using a portable analyser (i-STAT, Abbott Laboratory, Abbott Park, Illinois, USA) according to the manufacturer's protocol as described previously.22

Histological studies
The left lungs (n = 6 for each group) were removed immediately after the animals were killed and fixed with a mixture of 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M cacolate buffer, pH 7.4, for more than 24 h, dehydrated with a graded alcohol series and embedded in paraffin at 52°C. Sections were prepared and stained with haematoxylin and eosin for histological evaluation. Each lung section was scored for lung injury by a board-certified pathologist using previously published criteria.23 Briefly, the scoring items included: (1) alveolar capillary congestion; (2) haemorrhage; (3) infiltration or aggregation of neutrophils in the air space or the vessel wall; and (4) thickness of the alveolar wall/hyaline membrane formation. Each item was graded according to the following five-point scale: 0 = minimal (little) damage; 1 = mild damage; 2 = moderate damage; 3 = severe damage; and 4 = maximal damage. The mean sum of each field score was compared between the groups.

Myeloperoxidase assay
Myeloperoxidase (MPO) activity in the lung parenchyma, used as a marker enzyme for neutrophil infiltration into the lung, was assessed according to the methods described elsewhere.19 20

Bronchoalveolar lavage fluid protein measurement
Bronchoalveolar lavage (BAL) was performed as described previously.24 Total protein in the BAL fluid was determined using a commercial BCA Protein Assay Kit (Pierce, Rockford, Illinois, USA) according to the manufacturer's protocol as described previously.25

Tissue RNA extraction and reverse transcription and polymerase chain reaction (RT-PCR)
Total RNA from the right lung of rats after 4 h after treatment was isolated using TRIzol reagent (Invitrogen, Carlsbad, California, USA). Tumour necrosis factor (TNF-α) and macrophage inflammatory protein (MIP)-2 mRNA levels in the lung tissue were examined by the reverse transcription and polymerase chain reaction (RT-PCR), as described elsewhere.26 The gene-specific oligonucleotide primers for TNFα, MIP-2, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been described previously.27

Real-time reverse transcription-polymerase chain reaction
Real-time RT-PCR to quantitatively measure mRNA levels for RAS components was performed in an ABI PRISM 7500 Sequence Detector (PE Applied Biosystems Inc).24 Oligonucleotide primers for rat angiotensinogen, ACE, angiotensin converting enzyme 2 (ACE2), and the AT1 and AT2 receptors were designed from the GenBank databases (NM 012544 and NM 134432; table 1) using Primer Express (PE Applied Biosystems Inc, Foster City, California, USA).

Measurement of lung tissue angiotensin II levels
An angiotensin EIA kit (Peninsula Laboratories, San Carlos, California, USA) was used to measure lung tissue angiotensin II levels according to the manufacturer's instructions, as described elsewhere.28

Table 1 Oligonucleotide used as primers for real-time RT-PCR

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Oligonucleotide</th>
<th>Position</th>
<th>Amplicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agt1</td>
<td>Forward primer</td>
<td>GAGGAGTCTCTGTCATCCCA</td>
<td>1239–1258</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>TGTGAGATCCCGAAATTTCC</td>
<td>1346–1325</td>
</tr>
<tr>
<td>Ace</td>
<td>Forward primer</td>
<td>CGGTTTCTGAGGCTATGGGA</td>
<td>3080–3101</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>TCACGCACGCTGCTCCTCCTACT</td>
<td>3181–3162</td>
</tr>
<tr>
<td>Ace2</td>
<td>Forward primer</td>
<td>ACCCTCTCATACGCCCTACCTG</td>
<td>755–778</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>GTGCCAAAACCTACCCACCACATAT</td>
<td>828–806</td>
</tr>
<tr>
<td>Agrp1</td>
<td>Forward primer</td>
<td>GAAGCCAGAGACCATTTGIG</td>
<td>1260–1279</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>CACGGAATGCTCTGCTCITGCTCA</td>
<td>1360–1338</td>
</tr>
<tr>
<td>Agrp2</td>
<td>Forward primer</td>
<td>GCCAACATTTATTTCCGAGATG</td>
<td>528–550</td>
</tr>
<tr>
<td></td>
<td>Reverse primer</td>
<td>TCTCAGGOTGGAAGACCATA</td>
<td>608–588</td>
</tr>
</tbody>
</table>

Agt, angiotensinogen; Ace, angiotensin-converting enzyme; Agrp2, angiotensin-converting enzyme 2; Agrp1, type 1 angiotensin II receptor; Agrp2, type 2 angiotensin II receptor.
Figure 1 Change in (A) peak airway pressure, (B) mean arterial pressure, (C) arterial carbon dioxide tension (PaCO₂) and (D) arterial oxygen tension (PaO₂) in different groups of animals (n = 6 for each group). The peak airway pressure was lower in the low-volume ventilated groups than in the high-volume ventilated groups (p < 0.001). Pretreatment with captopril did not change the peak airway pressure. The mean arterial pressure was lower in the captopril-pretreated animals (p < 0.001 at the end of mechanical ventilation). PaCO₂ and PaO₂ were similar between different groups and did not change significantly after 4 h of mechanical ventilation. HV, high-volume ventilation; LV, low-volume ventilation; CAPHV, captopril pretreatment followed by high-volume ventilation; CAPLV, captopril pretreatment followed by low-volume ventilation; NC, non-ventilated control group.

Figure 2 Haematoxylin and eosin staining of lung sections from (A) the non-ventilated group, (B) the low-volume ventilation group, (C) the high-volume ventilation group and (D) the group pretreated with captopril followed by high-volume ventilation. Original magnification ×200.
Western blot analysis for NF-κB and IκB
Western blotting was used to assess the activation of NF-κB in the lung tissue. Polyclonal antibodies against the p65 component of NF-κB (Santa Cruz, Santa Cruz, California, USA), IκB or phosphorylated inhibitor-κB (IκB) (both from Cell Signaling, Beverly, Massachusetts, USA) were used according to the methods described elsewhere. Antibodies to proliferating cell nuclear antigen (PCNA) or c-Jun N-terminal kinase 1 (JNK1) were used to detect these proteins, used as loading controls for the nuclear and cytosolic samples, respectively.

Western blot analysis for the RAS components and AT1 and AT2 receptors
Western blotting was used to assess the protein expression of the RAS components in the lung tissue. Polyclonal antibodies against ACE, ACE2, and AT1 and AT2 receptors (Santa Cruz) were used according to the methods described elsewhere.

Statistical analyses
All continuous data are expressed as mean (SD) values. Comparisons of continuous variables between groups were performed using the t test and one-way analysis of variance.
using SPSS 10 software (SPSS Inc, Chicago, Illinois, USA). A p value of <0.05 was considered significant.

A detailed description of the Methods is available in the online supplement at http://thorax.bmj.com/supplemental.

RESULTS

Physiological changes during MV

Peak airway pressure was higher in the high-volume MV group than in the low-volume MV group (fig 1A), but did not change significantly throughout the course of MV. The mean arterial pressure was markedly decreased during MV in rats pretreated with captopril (fig 1B) compared with the high-volume and low-volume MV groups. The arterial blood gas data were similar in MV groups at the beginning of MV and showed no significant change after 4 h of MV (fig 1C, D).

Effect of high-volume ventilation on lung injury and neutrophil infiltration in rat lungs and attenuation by captopril

Histological studies showed that inflammatory cell infiltration was not significant in the lungs of the control group (fig 2A) or the low-volume ventilation group (fig 2B), but high-volume ventilation resulted in mild lung injury with mild neutrophil infiltration (fig 2C). The alveolar architecture was generally preserved. The neutrophil infiltration in the high-volume group was attenuated by captopril pretreatment (fig 2D).

The pathological lung injury scores were compatible with the histological data, as high-volume ventilation increased the lung injury score compared with the non-ventilated controls, and the effect was significantly attenuated by captopril pretreatment (fig 3A). There was no significant difference between the scores for the low-volume ventilation group and the controls or between the low-volume ventilation groups with or without captopril pretreatment. Figure 3B shows that high-volume MV significantly increased MPO activity and this effect was significantly attenuated by captopril pretreatment. There was no significant difference in MPO activity between the non-ventilated control and the low-volume ventilation groups.

High-volume ventilation also increases protein leakage into the alveolar space, and this was reduced by captopril pretreatment (p<0.05; fig 3C).

Effect of captopril on lung expression of pro-inflammatory cytokines and chemokines induced by high-volume ventilation

In the high-volume ventilation group the mRNA levels of TNFα and MIP-2 increased progressively up to 4 h, then decreased gradually after cessation of MV (fig 4A). The high-volume ventilation group had significantly higher levels of TNFα and MIP-2 compared to the non-ventilated controls (fig 4B). Captopril pretreatment significantly decreased the mRNA levels of TNFα (p<0.001) and MIP-2 (p<0.001) in the high-volume ventilation group. The pathological lung injury scores were compatible with the histological data, as high-volume ventilation increased the lung injury score compared with the non-ventilated controls, and the effect was significantly attenuated by captopril pretreatment (fig 3A). There was no significant difference between the scores for the low-volume ventilation group and the controls or between the low-volume ventilation groups with or without captopril pretreatment. Figure 3B shows that high-volume MV significantly increased MPO activity and this effect was significantly attenuated by captopril pretreatment. There was no significant difference in MPO activity between the non-ventilated control and the low-volume ventilation groups.

High-volume ventilation also increases protein leakage into the alveolar space, and this was reduced by captopril pretreatment (p<0.05; fig 3C).
MIP-2 mRNA than control groups; these increases were significantly attenuated by captopril pretreatment (fig 4B, C). The same trend was also shown for lung MIP-2 and serum MIP-2 mRNA than control groups; these increases were significant. (HV vs NC, p = 0.90, n = 3 for each group).

Effect of captopril on translocation of NF-κB in rats with high-volume ventilation-induced lung inflammation

Figure 5 shows representative findings for NF-κB activity after 4 h of treatment. The cytosolic fraction of NF-κB was markedly decreased in the high-volume ventilation and lipopolysaccharide-treated groups, with a simultaneous distinct increase in nuclear NF-κB (fig 5), showing that nuclear translocation of this factor was induced by injurious MV or lipopolysaccharide. In addition, translocation of NF-κB in the high-volume ventilation group was significantly, but not completely, attenuated by captopril pretreatment. On the cytosolic protein blots, the amount of IκB was also decreased by high-volume MV, with a simultaneous increase in phosphorylated IκB. This increase in IκB phosphorylation was also attenuated by captopril pretreatment.

Effect of high-volume mechanical ventilation on the expression of components of the RAS

The lung tissue angiotensin level was progressively increased in the high-volume group, but not in the low-volume group, during the 4 h course of MV (fig 6A). Quantitative real-time RT-PCR of the lung tissue showed that high-volume ventilation increased mRNA levels for angiotensinogen and the AT1 and AT2 receptors, but had no significant effect on ACE mRNA levels (fig 6A). The protein levels of the ACE, AT1 and AT2 were similar between groups. We also assessed the mRNA and protein levels of ACE2 in the lungs (fig 7). The mRNA expression of ACE2 was significantly decreased by high-volume ventilation but not by low-volume ventilation (fig 7A). The lung levels of ACE2 protein of the rats were very low compared with the level in the kidney or heart (fig 7B). The difference between groups was not significant.
Effects of angiotensin II receptor blockade on high-volume ventilation-induced expression of pro-inflammatory chemokine

During mechanical ventilation the decrease in blood pressure became more profound in the losartan-treated group but not in the PD123319-treated rats (fig 8A). Concomitant infusion of either losartan or PD123319 during MV attenuated the protein leak into the BAL fluid (fig 8B). The increase in lung tissue levels of MIP-2 mRNA induced by high-volume ventilation was attenuated by the concomitant infusion of either losartan or PD123319 (fig 8C). The increase in lung tissue myeloperoxidase activity by high-volume ventilation was also attenuated by losartan and by PD123319 (fig 8D).

DISCUSSION

In this study we have reported two novel findings. First, the RAS is activated by high tidal volume MV in the in vivo animal model. Over-distension of lung units by high-volume ventilation resulted in upregulated expression of RAS components and the AT1 and AT2 receptors and increased lung angiotensin II production. Second, the RAS plays an important role in high-volume VILI. Treatment with an ACE inhibitor or angiotensin receptor antagonist attenuated VILI, with suppression of cytokine expression and NF-κB activity in the lungs. We therefore believe that the RAS is actively involved in the pathogenesis of VILI.

Although previous clinical and experimental studies have shown that a high tidal volume results in injury to the lung,26,27 the consequences of high-volume ventilation in in vivo animal models, as seen in the current report, may be far more complex. Factors associated with the development of ventilator-induced lung injury may include the species of animals used in the study, the compliance of the respiratory system and the tolerance of the animal to the MV protocol. One of the main features of our study design was that we used a very high (40 ml/kg) tidal volume to cause lung injury, as had been reported in the literature. In experimental studies, as the tidal volume is increased to exert a pathogenic effect, the respiratory rate is usually reduced to maintain the arterial blood gas data constant, as in the current study. In other studies additional carbon dioxide was added to the breathing air to compensate the hyperventilation-induced hypocapnia in the high tidal volume group, while the respiratory rate was maintained. In our experience, we found that the rats could not tolerate a high respiratory rate due to severe haemodynamic compromise (data not shown). This finding was probably due to severe air trapping, which markedly increased the intrathoracic pressure and compromised venous return. We therefore cannot exclude a confounding effect of the respiratory rate on lung injury caused by MV. The protocol used in this study was based on those used by Whitehead et al26 and Ricard et al17 in that a very high tidal volume (about 40 ml/kg) was used to create injurious inflation of the alveoli. The reason for using this extremely high tidal volume was that the rats have good compliance of the respiratory system, and ventilation with this large volume does not cause too great an increase in the plateau airway pressure. Another consideration is that this treatment may mimic some extreme clinical conditions such as the adult respiratory distress syndrome (ARDS), in which the number of remaining functional alveoli may be so low that ventilation with a more...
normal tidal volume is considered as a very large volume. We did not find overt histological evidence of alveolar disruption in the lungs of rats ventilated with 40 ml/kg tidal volume, so the finding of neutrophil infiltration in the lungs cannot be explained by stress-related cell disruption or cell death. Activation of the lung cells, so-called mechnotransduction, may instead play an important role in the development of lung injury in this model. Another point in our study design is that the minute volumes of the low- and high-volume groups were different. The reason for the choice of these settings was that the arterial blood gas data were similar in the two groups during ventilation.

The RAS has been considered a mediator of inflammation and may therefore play an important pathogenic role in the inflammatory process associated with VILI. There have been previous reports that the pulmonary RAS and angiotensin II are associated with various pathophysiological conditions. Most reports supporting the active role of angiotensin in lung inflammation and injury involved studies on cultured cells. Imai et al. recently showed, in an in vivo study, that ACE is an important regulator of acid-induced lung injury. Our findings may provide further in vivo evidence for the involvement of the RAS in VILI. The pathogenic role of RAS in the inflammatory process and VILI is strongly supported by the fact that pretreatment with captopril attenuated lung inflammation, suppressed TNF-α and MIP-2 expression and NF-κB activity and reduced blood levels of angiotensin II. Based on these findings, we believe that ACE inhibition may be beneficial in animals ventilated with injurious high tidal volumes.

Our findings also provide support for the proposal that NF-κB pathway is the downstream response pathway for the action of angiotensin II in the inflammation process, as ACE inhibition attenuated the nuclear translocation of NF-κB. However, the RAS may also be influenced by NF-κB, as inhibition of NF-κB also attenuates RAS activity. Moreover, NF-κB is necessary for upregulation of AT1 receptor mRNA in rat cardiac fibroblasts treated with TNFα or interleukin-1β. Together with our findings, these results suggest that a positive feedback system may be present, and this possibly explains why high-volume MV triggers the RAS and why RAS-mediated ventilator-induced lung inflammation developed rapidly in our animal model study. In addition, angiotensin II has been shown to be associated with apoptosis and the fibrogenic process in lung injury, but whether these are associated with VILI requires further exploration.

Our finding that captopril treatment attenuated VILI and the inflammation process in the animal model may have important clinical implications. Therapeutic agents that block the production (ACE inhibitors) or action (angiotensin II receptor antagonists) of angiotensin II may be used as anti-inflammatory agents for the treatment or prevention of VILI. The activation of NF-κB associated with VILI is partially blocked by corticosteroids. Although there are few reports of the role of ACE inhibitor treatment in lung inflammatory diseases, a recent report showed that ACE inhibitor treatment is associated with a 19% lower risk of pneumonia, and the effect is more significant in Asian patients who have a 47% risk reduction. In our study, the lung inflammation action of angiotensin II could be mediated through both the AT1 and AT2 receptors. In the study by Imai et al., the AT1 receptor promoted lung disease whereas the AT2 receptor improved lung function. However, another study showed that NF-κB can be inactivated by administration of ACE inhibitor or AT1/AT2 receptor blockade. In our animal model the dose of PD123319 was relatively high (42 μg/kg/min), so it is possible that the AT1 receptor might also be affected by PD123319. The role the AT2 receptor in the pathogenesis of VILI therefore requires further study. Our findings that AT2 receptor blockade could attenuate VILI may provide further information on the complex mechanisms for lung injury.

The main limitation of this study is that it focused on the short-term effects of injurious MV and data regarding long-term effects are lacking. However, we have shown that active inflammation in the lungs can develop early in injurious MV and we believe that, if these injurious settings were used for a longer period, the inflammation and injury would be further aggravated. Although the inflammation was attenuated by an ACE inhibitor or angiotensin receptor antagonists, we do not know the long-term consequence of drug treatment, especially in the clinical setting in which treatment with these agents can cause hypotension, which is clearly undesirable in critically ill patients. Another limitation is that this study involved injurious MV as a pure insult to originally healthy lungs. This may be different from most clinical scenarios in which the patients may suffer from other initial insults such as pneumonia, sepsis or even ARDS before receiving MV. The local ACE and ACE2 activities were also not measured in this study. Further investigations are needed to elucidate the detailed mechanism of action of the RAS in VILI.

A detailed description of the Methods is available in the online supplement at http://thorax.bmj.com/supplemental

Authors’ affiliations
Jih-Shion Jerng, Yu-Chiao Hsu, Hong-Zhen Pan, Hao-Chiang Wang, Chong-Jen Yu, Pan-Chyr Yang, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
Huey-Dong Wu, Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
Chia-Tung Shun, Department of Forensic Medicine, National Taiwan University Hospital, Taipei, Taiwan
Hao-Chiang Wang, Department of Internal Medicine, Far Eastern Memorial Hospital, Pan-Chiao, Taipei, Taiwan

This study was supported by grants from the National Taiwan University Hospital (NTUH-94S97) and the National Science Council (NSC93-2314-B-002-223), Taiwan.

Competing interests: None.

REFERENCES
Role of the renin-angiotensin system in ventilator-induced lung injury 535

LUNG ALERT

Using molecular markers as a means of predicting prognosis and outcomes in the treatment of lung cancer

This study evaluated the potential association between the expression of two specific proteins and treatment outcomes of patients with early non-small-cell lung cancer. Increased expression of the gene RRM1 (regulatory subunit of ribonucleotide reductase) has been shown to reduce metastases, inhibit development of lung tumours and prolong survival. Similar data have been shown for ERCC1 (excision repair cross-complementation group 1).

The study group consisted of 187 patients who had undergone thoracotomy for resection of stage 1 non-small-cell lung cancer and had had no other treatment. The expression of RRM1, ERCC1 and PTEN (phosphatase and tensin homologue) were measured with a new fully automated and quantitative system, and the genetic results compared with clinical outcomes. RRM1 expression correlated with the expression of ERCC1 but not with PTEN.

The median disease-free and overall survival rate exceeded 120 months for patients with high expression of RRM1 (gene expression score >40.5) compared with 54.5 months’ disease-free survival and 60.2 months’ overall survival for those with low expression of the gene.

Patients with co-expression of both RRM1 and ERCC1 were divided into four groups according to high and low expression of the proteins. Significantly, of the patients who had undergone potentially curative lung cancer surgery, 30% with high expression of both proteins had a good outcome at 10 years.

The authors concluded that high expression of these genes correlated with favourable outcome in early disease, but alluded that same markers have been recognised to predict tumour-resistance to platinum agents and gemcitabine in advanced disease. This identified two key areas of management. Those with resected early stage disease who may not need adjuvant chemotherapy and those who are not likely to benefit from conventional chemotherapeutic agents in advanced cancer.

Jenny Cosgrove
Senior House Officer, Mater Infirmorum Hospital, Belfast; jenny.c@doctors.org.uk
Online supplement

Role of the renin-angiotensin system in ventilator-induced lung injury: An in vivo study in a rat model

Jih-Shuin Jerng, Yu-Chiao Hsu, Huey-Dong Wu, Hong-Zhen Pan, Hao-Chien Wang,
Chia-Tung Shun, Chong-Jen Yu and Pan-Chyr Yang
Methods

Reagents

Captopril, PD123319, lipopolysaccharide (LPS) from Escherichia coli (serotype 055:b5), and, unless otherwise indicated, all other chemicals were purchased from Sigma (Sigma Chemical, St. Louis, MO). Losartan, a specific AT1 receptor antagonist, was a gift from Merck (Merck & Co., Inc., Whitehouse Station, NJ). Antibodies to rat TNF-α, ACE, ACE2, AT1, AT2, or rat NF-κB p65 were purchased from Santa Cruz (Santa Cruz, CA). Antibodies to rat I-κB or phosphorylated I-κB were purchased from Cell Signaling (Beverly, MA).

Animal preparation, mechanical ventilation protocol, and drug treatment

All experiments were performed after approval by the Institutional Animal Committee of the National Taiwan University College of Medicine.

Male Sprague-Dawley rats weighing 200-250 g were cared for, handled and maintained in the animal resource facility of the National Taiwan University College of Medicine in accordance with the Institutional Guidelines. The rats were fed with rat chow and water ad libitum and housed in standard care facilities for ten days before being used for experiments.
The animals were anesthetized by intraperitoneal injection of urethane (1.3 g/kg) before mechanical ventilation was applied. Tracheostomy was performed, followed by arterial and venous catheterization. The tracheostomy tube was then connected to a volume-controlled ventilator for small animals (New England Medical Instruments, Inc., Medway, MA) and the animal ventilated according to the study design protocol. Immediately before starting mechanical ventilation, the animals were given intravenous pancuronium (4 mg/kg).

MV was applied using methods modified from the protocol described elsewhere that a very high tidal volume (40 ml/kg) was used to create injurious inflation of the alveoli. The animals were divided into the following three experimental groups: 1) non-ventilated controls; 2) treated with MV with a high tidal volume (40 ml/kg tidal volume, 3 cmH$_2$O of positive end-expiratory pressure [PEEP], 20 breaths/min, room air); 3) treated with MV with a low tidal volume (7 ml/kg tidal volume, 3 cmH$_2$O of PEEP, 100 breaths/min, room air). The control group only received the intraperitoneal injection of urethane. In the low-tidal volume and high-tidal volume groups, MV was applied for 4 hours and the peak airway pressure was monitored throughout. Blood samples (0.1 ml) were taken from the left femoral artery via the cannula immediately before starting ventilation and every 60 minutes thereafter. Arterial blood gas analysis was performed on site immediately after blood sampling using a portable analyzer.
(i-STAT, Abbott Laboratory, Abbott Park, IL, USA) according to the manufacturer’s recommendations. After ventilation, the animals were given a lethal dose of intraperitoneal pentobarbital, then, after flushing the pulmonary vessels with intracardiac injection of normal saline, the lungs were removed en block. The right lung was immediately frozen in liquid nitrogen and stored at -80°C for further analysis, while the left lung was processed for further studies described below. As a positive control for lung injury and inflammation, another group of non-ventilated rats received E. coli LPS instilled transtracheally [0.2 mg/100 g body weight dissolved in 0.5 mL of phosphate-buffered saline (PBS)]. The LPS solution was dispersed in the trachea just above the level of tracheal bifurcation.

Additional groups of rats received captopril pre-treatment before MV or were treated with losartan during MV. For the captopril-treated group, 50 mg/kg of captopril was added to the drinking water (500 mg/l) for the three days preceding mechanical ventilation. For the losartan- or PD123319-treated, losartan (10 mg/kg) or PD123319 (10 mg/kg) was injected intravenously via a pump during the 4 hours of MV. All medicated animals underwent the same ventilatory strategies described above.

Histological studies
The left lungs were removed immediately after the animals were killed and fixed with a mixture of 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M cacolate buffer, pH 7.4 for more than 24 hours, dehydrated with a graded alcohol series and embedded in paraffin at 52°C. Sections were prepared and stained with hematoxylin and eosin for histological evaluation. Each lung section was scored for lung injury by a board-certified pathologist using previously published criteria. Briefly, ALI was scored based on: 1) alveolar capillary congestion; 2) hemorrhage; 3) infiltration or aggregation of neutrophils in the air space or the vessel wall; and 4) thickness of the alveolar wall/hyaline membrane formation. Each item was graded according to the following five-point scale: 0 = minimal (little) damage; 1 = mild damage; 2 = moderate damage; 3 = severe damage; and 4 = maximal damage. The average sum of each field score was compared among groups. The total lung injury score for each animal was given as the mean of the scores for five lung sections.

Myeloperoxidase assay

Myeloperoxidase (MPO) in the lung parenchyma was used as a marker enzyme for neutrophil infiltration into the lung. The left lungs were washed with saline and immediately homogenized in 10 mM potassium phosphate buffer, pH 7.4, containing 1.0 mM EDTA. The homogenate was centrifuged at 10,000 g at 4°C for 20 min and
the pellet resuspended in 50 mM potassium phosphate buffer, pH 6.0, containing 0.5% (vol/vol) hexadecyltrimethyl-ammonium bromide (Sigma), re-homogenized, and sonicated and the suspension centrifuged at 40,000 g at 4°C for 15 min. A sample of the supernatant (0.1 ml) was added to 2.9 ml of 50 mM potassium phosphate buffer, pH 6.0, containing 0.167 mg/ml of O-dianisidine hydrochloride (Sigma) and 0.0005% (wt/vol) hydrogen peroxide and the absorbance of the solution at 460 nm measured over 3 min. MPO activity was expressed as international units per gram of dry tissue, one unit of enzyme activity being defined as the amount of peroxidase that produced an absorbance change of 1.0 optical density unit/min at 25°C.

Bronchoalveolar lavage fluid protein measurement

Bronchoalveolar lavage (BAL) was performed as described previously 6. Briefly, after the right main bronchus was ligated, 4 ml of PBS at room temperature was slowly instilled into the trachea and the left lung via the tracheostomy using a gauge connected to a catheter, followed by inspiration with 1 ml of air. The lung fluid was drained by gravity by changing the position of the animal and collected on ice, and 30 μl of a 1 mg/ml solution of aprotinin (Sigma), 10 μl of a 10 mg/ml solution of PMSF in isopropanol, and 10 μl of 100mM sodium orthovanadate per ml of lung fluid was immediately added. The BAL fluid was centrifuged at 1000 g for 10 min at 4°C and
the supernatant collected and stored at -80°C for further analysis. Total protein in the BAL fluid was determined using a commercialized BCA Protein Assay Kit (Pierce, Rockford, IL) according to the manufacturer’s protocol as described previously7, 8.

Tissue RNA extraction

Total RNA from the right lung of rats after 4 h after treatment was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. Briefly, lung tissue (0.5 g) was homogenized in liquid nitrogen and 1 ml of TRIzol added. One millilitre of the mixture was taken and 200 µl of chloroform added. The mixture was centrifuged at 13000 g at 4°C for 15 min, then the supernatant was removed and mixed with 0.5 ml of isopropanol and the mixture centrifuged at 13000 g at 4°C for 15 min. The supernatant was discarded and the pellet washed with 1 ml of 75% ethanol, then dissolved in 20 µl of DEPC-H\textsubscript{2}O. The purity and integrity of the RNA samples were assessed by OD\textsubscript{260}/OD\textsubscript{280} spectrophotometric measurements and by agarose gel electrophoresis (1% agarose-formaldehyde gel containing 20 mM morpholinosulphonic acid, 5 mM sodium acetate, and 1 mM EDTA, pH 7.0).

Reverse transcription and polymerase chain reaction (RT-PCR)
TNF-α and macrophage inflammatory protein (MIP)-2 mRNA levels in the lung tissue were examined by the reverse transcription and polymerase chain reaction (RT-PCR) \(^9\). One microgram of RNA was subjected to first-strand cDNA synthesis in a 20 µl reaction mixture containing avian myeloblastosis virus reverse transcriptase (10 U), 2 µl of dNTP mixture (2.5 mM of each dNTP), 0.5 µl of RNase inhibitor, 1 µl of oligo(dT)12–18 primers (10 µM) and reaction buffer (50 mM Tris-HCl, pH 8.3, 50 mM KCl, 10 mM MgCl₂, 0.5 mM spermidine and 10 mM DDT). The samples were incubated in a MJ Research PTC-200 thermal cycler (MJ Research) at 42°C for 60 min, then at 94°C for 2 min (enzyme denaturation step). The reverse transcription mixture was stored at -20°C for use in the PCR. All reagents were from Promega (Southampton, U.K.).

Four microliters of the reverse-transcribed products was used as the RT-PCR template.

PCR amplification was performed using rTaq DNA polymerase (Takara, Shiga, JP) with an initial denaturation at 95°C for 5 min, amplification for 27-30 cycles of denaturation at 94°C for 30s, annealing at 55°C (GAPDH) or 60°C (all other transcripts) for 30 s and extension at 72°C for 45 s, and a final extension at 72°C for 7 min. The gene-specific oligonucleotide primers for TNF-α, MIP-2, and GAPDH have been described previously \(^9\). The PCR products were electrophoresed on a 2% agarose gel and stained with ethidium bromide. Bands of each target transcript were
visualized by ultraviolet trans-illumination and captured using a digital camera. Each band was quantified by image analysis software AlphaImager System (Alpha Innotech Corporation). The level of gene expression for each transcript was normalized to that of the housekeeping gene, GAPDH.

Real-time reverse transcription-polymerase chain reaction

Real-time RT-PCR was used to quantitatively measure mRNA levels for RAS components.\(^{10}\) Oligonucleotide primers for rat angiotensinogen, ACE, ACE2, and the AT1 and AT2 receptors were designed from the GenBank databases (NM 012544 and NM 134432) (Table 1) using Primer Express (PE Applied Biosystems, Inc). Real-time RT-PCR was performed in an ABI PRISM 7500 Sequence Detector (PE Applied Biosystems) according to the manufacturer’s instructions. In brief, reverse transcription was carried out in a total volume of 25 µl consisting of 5 µl of the RT sample (250 ng), 12.5 µl of QIAGEN SYBR Green Master Mix (QIAGEN, Valencia, CA), 1 µl of each of the forward and reverse primers (5 µM) and 5.5 µl of H₂O. The thermocycling conditions were 1 cycle at 50°C for 2 min and 95°C for 10 min, 40 cycles of 95°C for 15 s, and 60°C for 1 min. The amounts of mRNA were determined by comparing the cycle threshold of each sample to those of RT standard curves. The
mRNA levels for each RAS component was normalized to the GAPDH mRNA levels in each sample and expressed as a fold increase compared to the control group.

Measurement of lung tissue angiotensin II levels

Lung tissue levels of angiotensin II were determined with EIA following the methods described previously\(^\text{11}\). Lungs were homogenized 10 100% methanol at 4°C, lyophilized, and resuspended in EIA assay buffer (Peninsula Laboratories, Belmont, CA, USA). Columns were pretreated with one volume of methanol and then two volumes of H\(_2\)O. Following sample application, columns were washed with one volume each for H\(_2\)O, hexane and chloroform and bound material eluted in 90% methanol. Eluted samples were lyophilized, resuspended in assay buffer, and quantitated by EIA (Peninsula Laboratories). Developed EIA plates were read on a plate reader, and data were then analyzed. All samples were run in duplicate.

Preparation of cytosolic and nuclear proteins from rat lung tissue and Western blot analysis for NF-κB and I-κB

To investigate the involvement of the NF-κB pathway in VILI, we performed Western blotting to assess the amounts of NF-κB, I-κB and phosphorylated I-κB in the rat lungs. A sample of the left lung (0.5 g) was homogenized and washed with
cold PBSOK. For extraction of cytosolic and nuclear proteins, 200 µl of cold buffer A (10 mM HEPES-KOH, 1.5 mM MgCl₂ and 10 mM KCl) containing 10 µl/l of a protease inhibitor mixture (Sigma Protease Inhibitor, Sigma-Aldrich) was added and the sample placed on ice for 10 minutes, then centrifuged at 8000 g for 1 minute at 4°C. The supernatant was collected as the cytosolic protein fraction and the pellet resuspended in cold buffer C (20 mM HEPES, 1.5 mM MgCl₂, 420 mM NaCl, 0.2 mM EDTA and 25% glycerol), placed on ice for 10 min and centrifuged at 13000 g for 2 min at 4°C. The supernatant was collected as the nuclear protein fraction.

For analysis of NF-κB p65 and I-κB, 20 µg of cytosolic or nuclear protein was electrophoresed on a 10 % SDS-PAGE gel and transferred to a polyvinylidene difluoride membrane (Amersham, Arlington Heights, IL), which was then blocked for 1 h at room temperature (RT) in 5 % non-fat dried milk in TBST [0.24 % (w/v) Tris, 0.8 % (w/v) NaCl, 0.05 % (v/v) Tween 20, pH 7.6] and incubated for 1 h at RT with monoclonal antibody against rat NF-κB p65 or rat I-κB. After three washes in TBST, the blots were incubated with peroxidase-conjugated-goat anti-rabbit IgG antibody for 1 h at RT and washed for 3 x 10 min with TBST. Bound antibody was then detected using ECL reagent (Amersham) and the immunoreactive bands analysed on an AlphaImager 2200 System (Alpha Innotech Corporation). Antibodies to proliferating cell nuclear antigen (PCNA) or c-Jun N-terminal kinase 1 (JNK1) were used to detect
these proteins, used as loading controls for the nuclear and cytosolic samples, respectively.

Western blot for ACE, ACE2, AT1 and AT2 in the lung tissue

Protein levels of the RAS components in the rat lung were determined by Western blotting. After the rat lungs were removed, they were be homogenized in lysis buffer (50 µM Tris-HCl, 3 mM sucrose, 0.1% Triton X-100, and 1mM protease inhibitor cocktail; Calbiochem-Novabiochem, La Jolla, CA, USA). The supernatant was removed, and protein content was estimated using a Micro BCA Protein Assay Reagent kit (Pierce, Rockford, IL, USA). Aliquots from lung homogenates were diluted in reducing sample buffer (0.5 M Tris-Cl, 2% β-mercaptoethanol, 87% glycerol, 10% SDS, and 1% bromophenol blue). Protein (40 µg/well) was loaded in 6% polyacrylamide gels, separated by electrophoresis, transferred to nitrocellulose membranes (Bio-Rad, Mississauga, Ontario, Canada), and then blocked for nonspecific binding in a 7% skimmed milk solution. Membranes were incubated with primary rabbit antibodies against ACE, ACE2, AT1 and AT2 (all from Santa Cruz Biotechnology, Santa Cruz, CA) for 2 hours at a 1:500 dilution. Membranes were washed and incubated for 1 hour with peroxidase-conjugated goat anti-rabbit IgG (Jackson ImunoResearch, Bio/Can Scientific, Mississauga, Ontario, Canada). After
repeated washing, membranes were incubated with enhanced chemiluminescence reagent (Amersham Pharmacia Biotech) and placed in a Fluor-X Max Imager, where the image was captured, and bands were analyzed by densitometric analysis. Results on all samples were normalized to control samples as well as the β-actin densities.

Enzyme-linked immunosorbent assay (ELISA) for macrophage-inflammatory protein-2 (MIP-2)

For the MIP-2 assays, 0.3 g of frozen right lung was added to 2 ml of a cold acid-ethanol mixture (93% ethanol, 2% concentrated HCl) containing 85 µg/ml of phenylmethylsulphonyl fluoride and 5 µg/ml of pepstatin A, homogenized for 1 min with a polytron homogenizer and left overnight at 4ºC. The samples were then centrifuged at 10,000 g at 4ºC for 20 min and the supernatant collected and assayed for MIP-2 using a rat MIP-2 ELISA kit (Biosource International, Camarillo, CA). Each sample was run in duplicate according to the manufacturer’s instructions.

Statistical analyses

All continuous data are expressed as the mean ± SD. Comparisons of continuous variables between groups were performed using the t test and one-way analysis of
variance using SPSS 10 software (SPSS, Inc, Chicago, IL) according to the instructions. A p value of < 0.05 was considered significant.

Results

Lung injury scores and TNF-α mRNA expression in rats treated with losartan or PD123319

Concomitant infusion of losartan or PD123319 significantly reduced the lung injury scores of rats ventilated with high tidal volumes (Fig 1 A) (p=0.001 for losartan, and 0.03 for PD123319). The lung tissue mRNA levels of TNF-α were also reduced by losartan or PD123319 in the high-volume ventilation group (Fig 1B).

References

Figure legend

Figure 1. Lung injury scores (panel A) and lung TNF-α levels (panel B) in different groups of VILI. A. Concomitant intravenous infusion of losartan (10 mg/kg) during mechanical ventilation significantly attenuated the lung injury score of the rat lung samples from the high-volume group (p=0.001). Similar finding was noted in the high-volume group treated with concomitant PD123319 (10 mg/kg) (p=0.03). B. Reverse transcription-polymerase chain reaction of the rat lung RNA samples showed a reduction of mRNA expression by either losartan or PD123319 in the high-volume ventilation groups.
Tables

Table 1. Oligonucleotide used as primers and probes for real-time RT-PCR

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Oligonucleotide</th>
<th>Sequence</th>
<th>Position</th>
<th>Amplicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agt</td>
<td>Forward primer</td>
<td>GTGGAGGTCCTCGTCTTCCA</td>
<td>1239-1258</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Reverse Primer</td>
<td>GTTGTAGGATCCCCGAATTCC</td>
<td>1346-1325</td>
<td></td>
</tr>
<tr>
<td>Ace</td>
<td>Forward primer</td>
<td>CGGTTTTTCATGAGGCTATTTGGA</td>
<td>3080-3101</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Reverse Primer</td>
<td>TCGTAGCCAACCTACCCACCAT</td>
<td>3181-3162</td>
<td></td>
</tr>
<tr>
<td>Ace2</td>
<td>Forward primer</td>
<td>ACCCTCTTTACATACGCCCTACTG</td>
<td>755-778</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Reverse Primer</td>
<td>TGTCCAAAACCTACCCACCAT</td>
<td>828-806</td>
<td></td>
</tr>
<tr>
<td>Agtr1</td>
<td>Forward primer</td>
<td>GAAGCCAGAGGACCATTGG</td>
<td>1260-1279</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Reverse Primer</td>
<td>CACTGAGTGCTTTCTCTGCTTCA</td>
<td>1360-1338</td>
<td></td>
</tr>
<tr>
<td>Agtr2</td>
<td>Forward primer</td>
<td>GCCAACATTTTATTTCCGAGATG</td>
<td>528-550</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Reverse Primer</td>
<td>TTCTCAGGTTGGGAAAGCATA</td>
<td>608-588</td>
<td></td>
</tr>
</tbody>
</table>

Agt: angiotensinogen; *Ace*: angiotensin-converting enzyme; *Ace2*: angiotensin-converting enzyme 2; *Agtr1*: type 1 angiotensin II receptor; *Agtr2*: type 2 angiotensin II receptor.