Association of inducible nitric oxide synthase with asthma severity, total serum immunoglobulin E and blood eosinophil levels

Jyotsna Batra, Tej Pratap Singh, Ulanganathan Mabalirajan, Aditi Sinha, Rajendra Prasad, Balaram Ghosh

Background: Nitric oxide is released by immune, epithelial and endothelial cells, and plays an important part in the pathophysiology of asthma.

Objective: To investigate the association of inducible nitric oxide synthases (iNOS) gene repeat polymorphisms with asthma.

Methods: 230 families with asthma (842 individuals) were recruited to identify and establish the genetic association of iNOS repeats with asthma and associated phenotypes. Serum nitric oxide levels in selected individuals were measured and correlated with specific genotypes. Multiple logistic regression analysis was performed to determine the effect of age and sex.

Results: A total of four repeats—a (CCCTT)n promoter repeat, a novel intron 2 (GT)n repeat (BV680047), an intron 4 (GT)n repeat (AFM311281) and an intron 5 (CA)n repeat (D17S1878)—were identified and genotyped. A significant transmission distortion to the probands with asthma was seen for allele 3 of the AFM311281 gene (p = 0.006). This allele was also found to be significantly associated with percentage blood eosinophils (p < 0.001) and asthma severity (p = 0.04). Moreover, it was functionally correlated with high serum nitric oxide levels (p = 0.006). Similarly, the promoter repeat was found to be associated with serum total immunoglobulin (Ig)E (p = 0.028). Individuals carrying allele 4 of this repeat have high serum IgE (p < 0.001) and nitric oxide levels (p = 0.03).

Conclusion: This is the first study to identify the repeat polymorphisms in the iNOS gene that are associated with severity of asthma and eosinophils. The functional relevance of the associated alleles with serum nitric oxide levels was also shown. Therefore, these results could be valuable in elucidating the role of nitric oxide in asthma pathogenesis.

Asthma is characterised by increased bronchial responsiveness, constriction and mucus hypersecretion in the bronchial walls in response to a variety of direct and indirect stimuli, leading to the symptoms of cough, wheezing and shortness of breath.1 The processes underlying increased airway responsiveness are complex and endogenous mechanisms may exist to protect against these processes.1 Ricciardolo et al2 have reported that airway-derived nitric oxide may be important in this respect, as it has a potent bronchodilator action by inducing relaxation of airway smooth muscle. Also, in a mouse model of asthma, it was shown that S-nitrosotiose (SNO), a relatively stable product of nitric oxide and thiol, is a potent endogenous bronchodilator.3 Inhibition of endogenous nitric oxide was also shown to increase the airway responsiveness and histamine in patients with asthma.4 However, considerable evidence supports the detrimental effect of nitric oxide. The fraction of nitric oxide in the exhaled air is considered to be a marker of asthma; its magnitude is increased in proportion to bronchial wall inflammation or induced-sputum eosinophilia as well as to airway responsiveness.5 Its levels are reduced in a dose-dependent manner with anti-inflammatory treatment; thus, its measurement has been suggested for the maintenance doses of inhaled corticosteroids.6,7

Nitric oxide is synthesised from the semi-essential amino acid L-arginine by the enzyme nitric oxide synthase (NOS), of which different isoforms have been identified.10 Constitutive isoforms (collectively called cNOS) generate small amounts of bronchoprotective nitric oxide in response to physiological stimuli, whereas an inducible form of NOS (iNOS, also designated as NOS2A) is induced by inflammatory cytokines during inflammation. iNOS is expressed predominantly in inflammatory cells (T cells and macrophages) and epithelial cells.11 In fact, the epithelial iNOS activity is the major determinant of nitric oxide concentration in exhaled breath.12 Nitric oxide produced by iNOS acts on the submucosal glands to cause mucus secretion. It may act on Th1 cells to downregulate interferon γ production, while acting on Th2 cells to upregulate their production of interleukin (IL)4 and IL5.13 In turn, IL4 increases immunoglobulin (Ig)E expression, whereas IL5 recruits eosinophils into the airways.14 Nitric oxide produced by iNOS, which needs a larger amount of substrate, also produces epithelial injury by forming peroxynitrite, which causes airway hyper-responsiveness.15

The gene for iNOS lies in the CC chemokine cluster region, on chromosome 17q11.2–q12, where a linkage with atopy and asthma has been reported.16 Genetic polymorphisms at the NOS2A gene were shown to be associated with susceptibility to diseases such as malaria and multiple sclerosis.17 A limited number of genetic studies have been reported on atopy or asthma. Konno et al8 suggested that the 14-repeat allele of CCCTT promoter polymorphism that affects promoter activity is inversely associated with atopy, but not with asthma. Gao et al19 found no association of a biallelic repeat with asthma. The

Abbreviations: ANOVA, analysis of variance; FBAT, family-based association test; iNOS, inducible nitric oxide synthase; NOS, nitric oxide synthases; PCR, polymerase chain reaction; SNO, S-nitrosothiol
Effect of iNOS in asthma pathology and the results of previous genetic studies prompted us to analyse the association of various repeat polymorphisms of the iNOS gene with asthma and associated phenotypes.

MATERIAL AND METHODS

Participants

In a multicentre-based asthma genetics study programme, families ascertained through a total of 230 probands (mean age 16.5 (standard deviation (SD) 11.5) years) were recruited from various collaborating hospitals of north and northwest India (Indo-European). The recruited study population involved children and adults with longstanding asthma (age range 3–48 years). The ethics committees of all the participating centres and hospitals approved the study. Written consent was obtained from all the participants or the parents in the case of children. Study design was such that at least one child with asthma along with both parents were recruited. Thus, in our study, more younger children with a median age of 13.0 years with asthma were recruited. Families were further extended whenever other members gave their consent to participate. Thus, 842 individuals were recruited, with an average family size of 3.47 (range 3–10) individuals per family.

Clinical evaluation of asthma and atopy

In the recruited study population, asthma was defined by clinical history and later validated by interview as described previously.22 Probands were diagnosed with asthma by a primary physician, followed by a confirmatory diagnosis by a common group of clinicians at the time of family visits. Probands were subdivided into three groups—with mild (intermittent or persistent), moderate or severe asthma—on the basis of the National Asthma Education and Prevention Program (Expert Panel Report-2) guidelines (http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf). Briefly, clinical tests performed to validate the asthma phenotype were as follows: presence of bronchial hyperresponsiveness (defined as the ratio of forced expiratory volume in one second to forced vital capacity (FVC) ≤ 80% at the time of the episode and improvement by bronchodilators; except for the probands with age <6 years (n = 5) for whom the pulmonary function test was not performed); skin prick test or specific serum IgE (in the case of children); total serum IgE and differential cell count associated with a positive response to at least one of the following questions depending on the age of the patient. Have you ever had episodes of breathlessness at rest with wheezing (mainly in the case of children)? Have you ever had an asthma attack at night? Were you ever admitted to the hospital for asthma? Are you taking any treatment for asthma? Sixteen allergens common to all the centres were used for the skin prick test, with both negative and positive controls (house dust mite, *Amaranthus spinosus*, *Brassica campestris*, *Cynodon dactylon*, *Parthenium hysterophorus*, *Propolis juliflora*, *Ricinus communis*, *Alternaria tenuis*, *Aspergillus fumigatus*, cockroach male, cockroach
female, mosquito, moth, grain dust rice, hay dust and house dust). Specific serum IgE was estimated for six common allergens (house dust mite, cockroach male, mosquito, moth, grain dust rice and house dust) using the method described by Voller et al., with slight modifications. Atopy was defined as a dichotomous variable, having a weak reaction equal to or greater than histamine or high specific IgE for at least one allergen. Total serum IgE levels were estimated using ELISA as described.

Clinical data on the diagnosis of asthma and atopic diseases or other respiratory disorders, their duration, skin problems, types and doses of drugs and history of tobacco smoking were obtained by completing a detailed questionnaire. Details of environmental factors and the geographical region of origin and migration status were also noted. Individuals with a history of active smoking in the past 3 years or with parasitic or helminthic infestation were excluded from the study. The affected status was also noted for all the family members recruited to the study.

Genomic DNA preparation
DNA was isolated from peripheral blood white cells using the modified salting-out method, and was stored at −20°C until further analysis, as described previously.

Identification and genotyping of repetitive sequences in and around the NOS2A gene
Putative repetitive sequences in and around the NOS2A gene were identified using the RepeatMasker software (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker). Four microsatellite repeats—namely, a CCTT repeat 2.5-kb upstream from the NOS2A transcription start site (M1), a novel GT repeat (BV680047) in intron 2 (M2), a GT repeat (AFM311ZB1) in intron 4 (M3) and a CA repeat (D17S1878) in intron 5 (M4)—were identified (fig 1) and validated for distribution in our study population by means of a polymerase chain reaction (PCR) using a 6-FAM-labelled forward primer and a non-labelled reverse primer (table 1). Further details can be obtained from the material available online at http://www.thorax.bmjournals.com/supplemental. The PCR products were separated by electrophoresis through a POP-4 gel using an ABI 3100 genetic analyser (PE Applied Biosystems, Foster City, California, USA), along with PET-510 internal size standard. Fragment lengths were determined using the GeneMapper Software V.3.7 (ABI). The number of repeats at each locus was determined by sequencing PCR fragments of individuals (n=5) being homozygotic for one allele.

Measurement of serum nitric oxide level
Total serum nitric oxide levels were estimated using a colorimetric assay kit that measures total nitrate, nitrite and SNO as an index of total nitric oxide produced, and hence NOS enzyme activity indirectly (Calbiochem, EMD Biosciences, Darmstadt, Germany). The absorbance was read at 540 nm using the plate reader (SOFT-MaxPro, Molecular Devices, ELISA Reader, Minnetonka, Minnesota, USA). The standard curve was plotted with absorbance against the nitrate concentration. For all statistical analysis, values were log transformed.

Data analysis
Family based association test (http://www.biostat.harvard.edu/~fbat/fbat.htm) was used to evaluate the association of four markers in NOS2A for the binary traits of asthma or atopy. Biallelic and multiallelic tests were performed using an additive genetic model to identify alleles with evidence for both linkage and association. FBAT analysis extends the methodology of the transmission disequilibrium test to evaluate nuclear families including both affected and unaffected offspring. It conditions on the observed traits and parental genotypes, and where parental data are missing, conditions on the offspring genotype configuration to specify the distribution of a score statistic. The conditional distribution is used to calculate the mean and variance of each family’s contribution to a general score statistic. Analysis of variance (ANOVA) was carried out to test the effect of repeat polymorphisms on total serum log10 IgE levels using JMP (SAS Institute, Cary, NC, USA). The alleles significantly associated with the trait in FBAT or with IgE were further evaluated to determine the magnitude and direction of association with serum nitric oxide levels and percentage of blood eosinophil count by ANOVA after making the distribution normal by excluding the extreme outliers using the Shapiro–Wilk test. Association with severity was analysed using a 2×2 table (homozygotic wild type v heterozygote/homozygote mutant) from simple interactive statistical analysis (http://home.clara.net/sisa/twoby2.htm). The influence of the particular polymorphism, age and sex on specific asthma phenotypes was also examined using multivariate logistic regression analysis.

RESULTS
Association of NOS2A microsatellites with asthma
A total of 10, 7, 9 and 11 alleles were observed for the repeats M1, M2, M3 and M4, respectively (table 2).

Overall, none of the repeats showed a significant association with asthma, when analysed using the multiallelic mode of FBAT (p>0.05). However, we found a significant association of the allele 3 of the M3 repeat with asthma (p=0.006). Allele 3 was overtransmitted to the probands with asthma as shown by the positive z value of the FBAT analysis. Similarly, allele 3 of the novel GT repeat and allele 6 of the CA repeat showed a positive association, whereas allele 6 of M3 showed a negative association with asthma (p<0.05; table 2). However, these associations were marginally significant. None of the alleles of

<p>| Table 1 Primer details for the genotyping of four microsatellite repeats in and around the NOS2A gene |</p>
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Number of bases</th>
<th>Primer sequence</th>
<th>Annealing temperature, (°C)</th>
<th>PCR product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_FP</td>
<td>24</td>
<td>5'-ACCCCGTGGAG GCCATCAGCTGAT-3'</td>
<td>62</td>
<td>176–221</td>
</tr>
<tr>
<td>M1_RP</td>
<td>24</td>
<td>5'-GCCGCGTGGAG GCCATCAGCTGAT-3'</td>
<td>57</td>
<td>215–229</td>
</tr>
<tr>
<td>M2_FP</td>
<td>24</td>
<td>5'-GTGTCATGAAAC CCAGAGCCAT-3'</td>
<td>57</td>
<td>343–339</td>
</tr>
<tr>
<td>M2_RP</td>
<td>20</td>
<td>5'-CAGGCGAGAAGC AACAAT-3'</td>
<td>57</td>
<td>323–341</td>
</tr>
<tr>
<td>M3_FP</td>
<td>21</td>
<td>5'-TTGGGTGGAGCCATAACCCACA-3'</td>
<td>57</td>
<td>323–341</td>
</tr>
<tr>
<td>M3_RP</td>
<td>22</td>
<td>5'-GAGTACCATTGAGCCCACTGCA-3'</td>
<td>57</td>
<td>323–341</td>
</tr>
<tr>
<td>M4_FP</td>
<td>25</td>
<td>5'-AGAGGCAATCTGGTGCAGTACAGTAC-3'</td>
<td>62</td>
<td>323–341</td>
</tr>
</tbody>
</table>

NOS2A, inducible nitric oxide synthase; PCR, polymerase chain reaction.
the promoter CCTTT repeat was found to be associated with asthma in our study. As 86% of our probands with asthma are atopic, further analysis with atopy as such has not been performed.

Allele 3 of M3 in NOS2A and asthma severity
Asthma severity status for the 207 individuals was determined unambiguously. Most (76.3%) of them had mild, 22.2% had moderate and only 1.5% were found to have severe asthma. Allele 3 of M3, which was found to be associated with asthma, was analysed for its association with asthma severity. As only 3 probands with severe asthma were recruited in our study population, they were grouped together with individuals with moderate asthma for association analysis using a 2 \times 2 table. In all, 27% of the individuals carrying allele 3 had moderate or severe asthma, whereas only 12% of those carrying other genotypes fall into this category. Thus, a significant association was observed with asthma severity and allele 3 of M3 ($p = 0.02$, odds ratio 2.62, 95% confidence interval (CI) 1.03 to 6.6; $p = 0.04$ after multiple logistic regression).

Association of the NOS2A repeat polymorphisms with serum total IgE
As increased total serum IgE level is one of the major characteristics of atopy and atopic asthma, and nitric oxide is known to regulate IgE, the genetic effects of the NOS2A repeat polymorphisms were tested on this trait. One-way ANOVA showed a significant association of the promoter CCTTT repeat polymorphism and serum IgE levels (table 3; $p = 0.018$; $p = 0.028$ after multiple logistic regression). When mean log10 serum total IgE of individuals with allele 4 was compared with that of individuals with all other alleles pooled together and analysed using ANOVA, we found that the allele 4 (12 repeats) was significantly associated with the high log10 serum total IgE levels ($p < 0.001$). However, none of the other microsatellites (M2, M3 and M4) was found to be associated with IgE in our analysis (table 3).

Association of the NOS2A repeat polymorphisms with peripheral blood eosinophils (%)
We checked for the association of allele 3 of M3 and allele 4 of the M1 with percent blood eosinophil counts. A significant association was observed with allele 3 of M3 ($F = 8.64, df = 2, p < 0.001$); homozygotic individuals had the highest percentage of eosinophils, followed by heterozygotic individuals and then the individuals with other genotypes (table 4). Negligible effects of age and sex were observed when regressed with these two parameters ($p < 0.001$). However, no significant association was observed for the allele 4 of M1 ($F = 2.002, df = 2, p = 0.14$; table 4).

Table 2
<table>
<thead>
<tr>
<th>Allele</th>
<th>Repeat size</th>
<th>Allele frequency</th>
<th>Informative families (n)</th>
<th>z Score</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 2.5 kb CCTTT repeat (M1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (176 bp)</td>
<td>9</td>
<td>0.042</td>
<td>32</td>
<td>0.926</td>
<td>0.355</td>
</tr>
<tr>
<td>2 (181 bp)</td>
<td>10</td>
<td>0.166</td>
<td>92</td>
<td>-0.612</td>
<td>0.541</td>
</tr>
<tr>
<td>3 (186 bp)</td>
<td>11</td>
<td>0.162</td>
<td>89</td>
<td>0.476</td>
<td>0.634</td>
</tr>
<tr>
<td>4 (191 bp)</td>
<td>12</td>
<td>0.192</td>
<td>108</td>
<td>-1.273</td>
<td>0.203</td>
</tr>
<tr>
<td>5 (196 bp)</td>
<td>13</td>
<td>0.153</td>
<td>96</td>
<td>0.219</td>
<td>0.827</td>
</tr>
<tr>
<td>6 (201 bp)</td>
<td>14</td>
<td>0.132</td>
<td>80</td>
<td>0.722</td>
<td>0.470</td>
</tr>
<tr>
<td>7 (206 bp)</td>
<td>15</td>
<td>0.107</td>
<td>61</td>
<td>0.663</td>
<td>0.508</td>
</tr>
<tr>
<td>8 (211 bp)</td>
<td>16</td>
<td>0.022</td>
<td>19</td>
<td>-0.539</td>
<td>0.590</td>
</tr>
<tr>
<td>9 (216 bp)</td>
<td>17</td>
<td>0.012</td>
<td>10</td>
<td>0.577</td>
<td>0.564</td>
</tr>
<tr>
<td>10 (221 bp)</td>
<td>18</td>
<td>0.003</td>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Intron 2 GT repeat (M2)					
1 (215 bp)	19	0.032	24	-1.095	0.273
2 (217 bp)	20	0.146	70	-0.826	0.409
3 (219 bp)	21	0.522	149	2.288	0.022
4 (221 bp)	22	0.245	104	-1.422	0.155
5 (223 bp)	23	0.03	19	-0.888	0.374
6 (225 bp)	24	0.014	10	0.302	0.763
7 (229 bp)	26	0.011	2	--	--

Intron 4 GT repeat (M3)					
1 (343 bp)	13	0.213	89	-0.926	0.354
2 (345 bp)	14	0.007	7	--	--
3 (347 bp)	15	0.406	142	2.759	0.006
4 (349 bp)	16	0.166	82	-0.403	0.687
5 (351 bp)	17	0.011	9	--	--
6 (353 bp)	18	0.154	88	-2.001	0.045
7 (355 bp)	19	0.026	15	0.19	0.849
8 (357 bp)	20	0.016	10	-0.632	0.527
9 (339 bp)	11	0.002	1	--	--

Intron 5 CA repeat (M4)					
1 (323 bp)	14	0.238	65	1.73	0.08
2 (325 bp)	15	0.144	60	-1.91	0.06
3 (327 bp)	16	0.207	69	-1.33	0.18
4 (329 bp)	17	0.087	28	-0.82	0.41
5 (331 bp)	18	0.013	8	--	--
6 (333 bp)	19	0.027	11	2.32	0.02
7 (335 bp)	20	0.046	19	2.12	0.03
8 (337 bp)	21	0.059	30	-0.26	0.79
9 (339 bp)	22	0.148	66	0.40	0.69
10 (341 bp)	23	0.029	10	-1.27	0.21
11 (343 bp)	24	0.003	1	--	--

*p Values are nominal and not corrected for the multiple testing.
Table 3 Serum total log_{10} immunoglobulin (IgE) levels in the context of alleles of four repeat polymorphisms in NOS2A

<table>
<thead>
<tr>
<th>Allele (repeat size)</th>
<th>Number of alleles</th>
<th>Overall p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>−2.5 kb CCTTT repeat (M1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (9)</td>
<td>24</td>
<td>2.87 (0.46)</td>
</tr>
<tr>
<td>2 (10)</td>
<td>61</td>
<td>2.81 (0.51)</td>
</tr>
<tr>
<td>3 (11)</td>
<td>63</td>
<td>2.78 (0.52)</td>
</tr>
<tr>
<td>4 (12)</td>
<td>76</td>
<td>3.09 (0.63)</td>
</tr>
<tr>
<td>5 (13)</td>
<td>55</td>
<td>2.87 (0.52)</td>
</tr>
<tr>
<td>6 (14)</td>
<td>49</td>
<td>2.73 (0.53)</td>
</tr>
<tr>
<td>7 (15)</td>
<td>33</td>
<td>2.91 (0.54)</td>
</tr>
<tr>
<td>8 (16)</td>
<td>10</td>
<td>2.85 (0.38)</td>
</tr>
</tbody>
</table>

Intron 2 GT repeat (M2)		
1 (19)	8	2.74 (0.53)
2 (20)	69	2.99 (1.00)
3 (21)	195	2.96 (0.82)
4 (22)	86	2.96 (0.71)
5 (23)	12	2.91 (0.57)
6 (24)	4	2.69 (0.66)

Intron 4 GT repeat (M3)		
1 (13)	86	2.89 (0.47)
2 (14)	3	2.47 (0.62)
3 (15)	174	2.96 (0.64)
4 (16)	62	2.77 (0.53)
5 (17)	2	2.72 (0.11)
6 (18)	42	2.94 (0.64)
7 (19)	11	3.03 (0.57)
8 (20)	4	3.13 (0.15)

Intron 5 CA repeat (M4)		
1 (14)	33	2.86 (0.56)
2 (15)	34	2.91 (0.52)
3 (16)	80	2.88 (0.52)
4 (17)	15	2.95 (0.45)
5 (18)	10	2.78 (0.39)
6 (19)	22	2.83 (0.56)
7 (20)	25	2.89 (0.52)
8 (21)	42	2.76 (0.51)
9 (22)	68	2.62 (0.50)
10 (23)	4	3.18 (0.33)

*The p values are nominal and not corrected for the multiple testing.

DISCUSSION

Nitric oxide, a relatively stable free radical, is increased in exhaled air and plasma of people with asthma compared with that in healthy individuals, and is increasingly implicated in the pathogenesis of inflammation in asthma. Nitric oxide produced in the lungs is an important regulator of airway events, including modifying airway tone, regulating pulmonary vascular tone, stimulating mucus secretion, modulating mucociliary clearance through effects on ciliary beat frequency, and immune surveillance including tumoricidal and bactericidal effects. Studies of NOS in asthma have been focused on iNOS as iNOS was shown to be up regulated in patients with asthma and is believed to represent the major source of nitric oxide in the lungs. NOS2A (iNOS) has been identified as a calcium-independent isofrom, which was detected in the brain, lungs, and liver of rats after endotoxin treatment. The transcriptional activation of iNOS in these cells is regulated by endogenous mediators (such as chemokines and cytokines) as well as exogenous factors including allergens and environmental pollutants.

To elucidate the role of iNOS in asthma pathogenesis, we have identified and genotyped four repeats including a novel (GT)n repeat in intron 2 of NOS2A. A significant transmission distortion to the probands with asthma was seen for allele 3 of the (GT)n repeat in intron 4. As the allele at each locus is not fully independent because of linkage disequilibrium across the gene (pairwise r^2=0.74 among the repeats; fig 1), and the end points (asthma, IgE, eosinophil counts, asthma severity and nitric oxide levels) used are clearly not independent, no corrections for the multiple testing have been applied in our analysis. Here, we have undertaken a family-based approach to analyse the association of polymorphic repeats with asthma, which is more robust than the classic population-based studies. Although population-based studies have more power, cryptic population stratification can produce false-positive results. On the other hand, asthma being a complex genetic disorder, owing to small effects of individual genes, a family-based study may fail to detect significant association even when it exists, because of the power constraints. Camp suggested that at least 200 informative triads (patients and parents) are required for a completely recessive disorder with a population prevalence rate of 10% and a relative risk (RR) of 0.011. As RR for asthma...
is >0.01, in order to study 8–10 alleles per locus, the number of families recruited by us (n = 230) would be enough to impart sufficient power (at least 80%) for statistical analysis. Moreover, using the population based association test, the power of our study to detect the association at \(\alpha = 0.05 \) for an allele with a frequency of 5% was found to be 82.5%. In addition to FBAT, we have also confirmed our results using other statistical tests such as the pedigree disequilibrium test (data not shown). Moreover, while analysing our data with respect to the other asthma-associated phenotypes (serum IgE, blood eosinophil counts or serum nitric oxide levels), even after high drop-outs (small sample size), the power of the statistical analysis was >80% as calculated using the JMP software. Although the samples in our study population were collected from various centres, the samples belong to a homogeneous population of Indo-European origin. Thus, it is very unlikely that our results are due to stratification or an inherent statistical bias.

Although the association of allele 3 of M3 is novel and interesting, the causal relationship with asthma remains to be elucidated. Various groups have shown that variable length intronic (GT)n repeats can regulate expression or the splicing pattern of a gene. When analysed using the transcription factor analysis software MatInspector (http://www.genomatix.de/products/MatInspector), we found the presence of binding sites for various regulatory factors such as hypoxia-inducible factor and interferon regulatory factor 3 near the associated repeat (fig 1).

Interestingly, allele 3 of this repeat was also found to be significantly associated with percent peripheral blood eosinophils as well as with asthma severity. Our results are imperative as nitric oxide is known to modulate the Th1/Th2 balance by favouring Th2 responses and also ILS production. Functional correlations of allele 3 with high serum nitric oxide levels add further confidence to our results. In our study, we measured the total nitric oxide levels in the sera of the selected individuals, which can be influenced by many endogenous factors, including the three types of NOS and also the SNOs. Nevertheless, as iNOS is the predominant nitric oxide synthetiser in the induced state, the serum total nitric oxide levels could be an indirect reflection of iNOS activity. To gain an insight into the genetic significance of allele 3 of M3 on tissue-specific expression of nitric oxide, our results have to be further validated using bronchosalveolar lavage fluid, lung biopsy samples or exhaled air. Nevertheless, the possibility of any other repeat polymorphism present within the gene (remaining 20 introns) or any functional small nuclear polymorphisms in linkage disequilibrium with allele 3 of M3 should not be overlooked.

Previous genetic studies have shown the association of the genetic variants of nNOS and eNOS with asthma. To the best of our knowledge, the only two studies on iNOS repeats have failed to show any association with asthma. Also, the repeat showing association in our population has not been studied by other groups. In accordance with the findings of Konno et al., we have not found any association of the allele 14 and other alleles of the promoter CCTTT repeat with asthma. However, in our study, allele 4 (12 repeat) of this functional promoter repeat polymorphism was found to be associated with high serum total IgE as well as with serum nitric oxide levels. Cardinale et al. have shown a significant positive correlation between exhaled nitric oxide and serum total IgE in patients with asthma with allele 4. However, the putative role of allele 4 in the transcriptional regulation of iNOS by binding to regulatory proteins remains to be elucidated in the future.

To summarise, this is the first study in any population identifying the association of the iNOS gene repeat polymorphisms with asthma. The associated allele has been further analysed with asthma severity, blood eosinophil counts and, most importantly, with serum nitric oxide levels. In contrast with earlier observations, where nitric oxide was primarily implicated to protect against atopy, in our study, high nitric oxide levels associated with risk genotypes point towards the pro-inflammatory role of nitric oxide in patients with established asthma.

ACKNOWLEDGEMENTS

JB wishes to thank CSR for her fellowship. We thank all participating clinicians: Dr SK Sharma, Dr VK Vijayan, Dr PV Niphadkar and Dr V Kumar and the volunteers for helping in this study. We also thank Mr Rajeshkumar Chatterjee, Mr A Kumar and Ms Deepti Maan for their technical assistance.

Authors’ affiliations

Jyotsna Batra, Tej Pratap Singh, Ulaganathan Malabirajan, Aditi Sinha, Balaram Ghosh, Molecular Immunogenetics Laboratory, Institute of Genomics and Integrative Biology, Delhi, India

Rajendra Prasad, Department of Tuberculosis and Chest diseases, King George Medical University, Lucknow, Uttar Pradesh, India

Funding: The Council of Scientific and Industrial Research (Task Force project-SMM0006), Government of India, provided financial assistance.

Competing interests: None.

REFERENCES

www.thoraxjnl.com

Downloaded from http://thorax.bmj.com/ on May 12, 2022 by guest. Protected by copyright.
Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking contributors:

- Pregnancy and childbirth
- Endocrine disorders
- Palliative care
- Tropical diseases

We are also looking for contributors for existing topics. For full details on what these topics are please visit www.clinicaledvidence.com/ceweb/contribute/index.jsp

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500-3000 words), using evidence from the final studies chosen, within 8-10 weeks of receiving the literature search.
- Working with Clinical Evidence editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every 12 months using any new, sound evidence that becomes available. The Clinical Evidence in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to CECommissioning@bmjgroup.com.

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge).

Topics are usually 1500-3000 words in length and we would ask you to review between 2-5 topics per year. The peer review process takes place throughout the year, and out turnaround time for each review is ideally 10-14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer-review questionnaire at www.clinicaledvidence.com/ceweb/contribute/peerreviewer.jsp
had a chest CT scan on referral. They fail, however, to describe a role for chest CT, but do imply that it may be indicated for patients undergoing video-assisted thoraco-
scopic drainage (VATS). There is no evi-
dence in the current literature supporting
the use of CT scans before VATS. The
British Thoracic Society guidelines do not
recommend routine chest CT scans in children
with empyema.

In our centre all patients with empyema
requiring intervention undergo VATS
(approximately 40/year). We would suggest
that chest CT scanning is not indicated
before VATS in nearly all cases. We have
found chest CT scans to be helpful, how-
ever, in situations where the patient has not
responded to appropriate treatment with
antibiotics and VATS. In this situation the
possibilities are reaccumulation of pleural
fluid, abscess formation or more extensive
parenchymal involvement, differential diag-
oses that are distinguished by CT scanning
and information that is critical to the
decision to reoperate (or not).

In addition, Jaffe et al do not take the
opportunity to critically examine the role of
chest ultrasound scans in patients with
empyema. In our experience, clinical exam-
ination and chest radiography can determine
the presence of pleural fluid. If the purpose
of the ultrasound scan is to determine
whether the fluid is simple (a parapneumo-
nic effusion) or organised (empyema), this
can be achieved more simply with a lateral
decubitus or erect chest radiograph. The
decision to undertake definitive manage-
ment with urokinase or VATS is determined
by the presence of unremitting infection
and/or fluid volume in the pleural space. It
is an outdated paradigm that the distinction
between simple and organised pleural fluid
makes any difference to subsequent treat-
ment or outcome. The main use for ultra-
son sound scanning should be for those children
who are found to have a unilateral white-
out on the chest radiograph at presentation
and for whom the distinction between
pleural space and parenchymal disease is
difficult to make.

J Massie, N Pillarisetti, S Ranganathan
Department of Respiratory Medicine, Royal Children's
Hospital, Melbourne, Australia

Correspondence to: Associate Professor J Massie,
Department of Respiratory Medicine, Royal Children's
Hospital, Parkville, Melbourne 3052, Australia; john.massie@rch.org.au

Competing interests: None.
Accepted 26 June 2008

REFERENCES
1. Jaffe A, Calder AD, Owens CM, et al. The role of
routine computed tomography in paediatric pleural
empyema. Thorax. Published Online First 20 May 2008. doi:
10.1136/thx.2007.042500.
BTS guidelines for the management of pleural infection

Author’s response
We thank Massie et al for correctly ques-
tioning the clinical need for routine chest
CT scanning before performing video-
assisted thoracoscopic surgery (VATS). Our
study was pragmatically designed to reflect
clinical practice in our institute, where
thoracic surgeons routinely requested a pre-
operative CT scan for use as a “road map”
when performing minimally invasive endo-
scopic surgery where direct visual access is
limited. This helps to plan and assist in
placement of the ports and instruments in
order to decrease risk and avoid potential
complications such as bronchopleural fistula
which would result as a consequence of
puncturing the lung parenchyma in close
proximity to the pleura. We agree with them
that there is no evidence base to support this
practice in terms of risk, and our study was
not designed to answer this question.

The principle of providing surgical “road maps”
(which cross-sectional imaging now provides)
is prevalent in many areas of
cardiothoracic imaging where CT and MRI
are added as an adjunct to echocardiography
and ultrasound scans in order to enhance
anatomical (and, indeed, sometimes func-
tional) information to enhance quality and
provide a safer more informed patient journey.

We are surprised that Massie et al advo-
cate the use of a lateral decubitus chest
radiograph in place of an ultrasound scan
which is not, in fact, a recommendation of the
BTS guidelines. Indeed, this would be a
retrograde step in terms of the quality of
information and the radiation burden,
and should only be advocated where there is no
access to ultrasound.

As discussed in our paper, ultrasound is an
invaluable tool as it is cheap, mobile, easy to
use, can differentiate transonic from purulent
fluid, solid lung from fluid and enables the
radiologist to mark the spot for chest drain
insertion. Although it has been used to stage
the disease, we agree that it is not useful in
predicting the clinical outcome as was evident
in our study. Importantly, ultrasound does
not carry a radiation burden.

One of the key messages we had hoped to
emphasise in our study is the critical need to
reduce exposure of children to unnecessary
radiation. With this in mind, we disagree with
Massie et al and continue to advocate the use
of ultrasound as the most important imaging
modality in managing children with empyema.
The BTS guidelines also support this view.

A Jaffe, A D Calder, C M Owens, S Stanoevich, S
Sonnappa
1 Sydney Children’s Hospital, Randwick and University of
New South Wales, Sydney, Australia; 2 Department of
Radiology, Great Ormond Street Hospital for Children NHS
Trust, London, UK; 3 Portex Anaesthesia, Intensive Therapy
and Respiratory Unit, Institute of Child Health, London, UK;
4 Department of Respiratory Medicine, Great Ormond Street
Hospital for Children NHS Trust, London, UK

Correspondence to: Dr A Jaffe, Department of Respiratory
Medicine, Sydney Children’s Hospital, High Street,
Randwick, Sydney, NSW 2031, Australia; adam.jaffe@sesihs.health.nsw.gov.au

Competing interests: None.

CORRECTIONS
doi:10.1136/thx.2008.101691corr1
A U Wells, N Hirani, and on behalf of the
British Thoracic Society Interstitial Lung
Disease Guideline Group, a subgroup of the
British Thoracic Society Standards of Care
Committee, in collaboration with the
Thoracic Society of Australia and New
Zealand and the Irish Thoracic Soc.

Interstitial lung disease guideline: the
British Thoracic Society in collaboration
with the Thoracic Society of Australia and
New Zealand and the Irish Thoracic Society.

The correct list of authors for these
guidelines is: B Bradley, H M Branley, J J
Egan (Irish Thoracic Society), M S Greaves,
D M Hansell, N K Harrison, N Hirani, R
Hubbard, F Lake (TSANZ), A B Millar, W A
H Wallace, A U Wells, M K Whyte, M L
Wilsher (TSANZ). The British Thoracic
Society Standards of Care Committee, in
collaboration with the Thoracic Society of
Australia and New Zealand, and the Irish
Thoracic Society.

doi:10.1136/thx.2005.047803corr1
Anticholinergics in the treatment of children
and adults with acute asthma: a systematic
review with meta-analysis (Thorax 2005;60:740–6).
This article was originally published with an incorrect digital
object identifier (doi). It has been updated with the
correct doi: 10.1136/thx.2005.047803. We
apologise for any inconvenience caused.

doi:10.1136/thx.2005.058156corr1
T Hirano, T Yamagata, M Gohda, et al.
Inhibition of reactive nitrogen species pro-
duction in COPD airways: comparison of
inhaled corticosteroid and oral theophylline
(Thorax 2006;61:761–6). This article was
originally published with an incorrect digital
object identifier (doi). It has been updated with the
correct doi: 10.1136/thx.2005.058156. We
apologise for any inconvenience caused.

doi:10.1136/thx.2005.057935corr1
Association of inducible nitric oxide
synthase with asthma severity, total serum
immunoglobulin E and blood eosinophil
levels (Thorax 2007;62:16–22). This article
was originally published with an incorrect
digital object identifier (doi). It has been updated with the
correct doi: 10.1136/thx.2005.057935. We
apologise for any inconvenience caused.