Background: Mast cell microlocalisation within the airway smooth muscle (ASM) bundle is an important determinant of the asthmatic phenotype. We hypothesised that mast cells migrate towards ASM in response to ASM derived chemokines.

Methods: Primary ASM cultures from subjects with and without asthma were stimulated with interleukin (IL)-1β, IL-4, and IL-13 alone and in combination. Mast cell chemotaxis towards these ASM supernatants was investigated, and the chemokinas mediating migration by using specific blocking antibodies for stem cell factor (SCF) and the chemokine receptors CCR3, CXCR1, 3 and 4 as well as the Gi inhibitor pertussis toxin and the tyrosine kinase inhibitor genistein were defined. The concentrations of CCL11, CXCL8, CXCL10, TGF-β; and SCF in the supernatants were measured and the effect of non-asthmatic ASM supernatants on the mast cell chemotactic activity of asthmatic ASM was examined.

Results: Human lung mast cells and HMC-1 cells migrated towards Th2 stimulated ASM from asthmatics but not non-asthmatics. Mast cell migration was mediated through the combined activation of CCR3 and CXCR1. CCL11 and CXCL8 expression by ASM increased markedly after stimulation, but was similar in those with and without asthma. ASM supernatants from non-asthmatics inhibited mast cell migration towards the asthmatic ASM supernatant.

Conclusion: Th2 stimulated ASM from asthmatics is chemotactic for mast cells. Non-asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards stimulated asthmatic ASM. Specifically targeting mast cell migration into the ASM bundle may provide a novel treatment for asthma.
maximum within day amplitude from twice daily PEF measurements over 14 days). Subjects with asthma underwent bronchoscopy. Non-asthmatic subjects were undergoing lung resection for either lung transplantation or carcinoma. The study was approved by the Leicestershire and Sydney Central Area Health Service and University of Sydney Human Ethics Committees and all patients gave their written informed consent.

Airway smooth muscle isolation and culture
From bronchial biopsy specimens or resected bronchial tissue, pure ASM bundles were dissected free of surrounding tissue. In the non-asthmatic the ASM was derived from similar airway divisions to the bronchial biopsies. The small muscle bundles were cultured in DMEM supplemented with 10% FBS, 4 mM l-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin. ASM cell characteristics were determined by immunofluorescence and light microscopy with α-smooth muscle actin-FITC direct conjugate and calponin and myosin indirectly conjugated with FITC (Sigma, Gillingham, Dorset, UK).

Mast cell isolation and culture
HLMC from lung normal obtained at surgery for carcinoma at Leicester, UK (seven donors) were isolated by immunomagnetic affinity purification using the Dynal Cellection kit (Dynal, Oslo, Norway) as previously described.22 A typical lung sample provided a yield of 0.1–0.5 × 10^6 HLMC/g of lung of >98% purity. Cells were cultured in DMEM, 10% fetal bovine serum (FBS) supplemented with SCF (100 ng/ml), IL-10 (10 ng/ml), and IL-6 (50 ng/ml) (R&D Systems, Abingdon, Oxfordshire, UK).

HMC-1 cells
The HMC-1 cell line was a gift from Dr J Butterfield (Mayo Clinic, Rochester, MN, USA). HMC-1 cells were maintained in Iscove’s modified DMEM as described previously.23

ASM stimulation
ASM cells from nine asthmatic and six non-asthmatic subjects were plated into 6-well plates (9.6 × 10^6 cells in 2 ml DMEM and 10% FBS), grown for 1 week, then growth was arrested for 48 hours with serum deprived medium and either left unstimulated or stimulated with IL-1β and/or Th2 cytokines as follows: (i) IL-1β, (ii) IL-4, (iii) IL-13, (iv) IL-4 and IL-13, and (v) IL-1β, IL-4 and IL-13 (10 ng/ml of each; R&D Systems, Abingdon, UK) for 24 hours. Using the same protocol, further ASM from five asthmatics and six non-asthmatics were stimulated with Th1 cytokines IL-1β, TNFα and IFN-γ (10 ng/ml each cytokine in combination; R&D Systems). The cytokine concentrations were chosen to reflect the maximal response as identified in previous reports.24 Supernatants were collected and stored at −80°C and cell counts were derived for the cells in each well. Experiments were performed using ASM cells from passage 3–7 and the passage number was not different between ASM from subjects with or without asthma.

Insufficient supernatants were available to study the role of SCF in mast cell migration to Th2 stimulated ASM supernatants. Thus, additional ASM supernatants from seven asthmatics and eight non-asthmatics where non-confluent cells had been left unstimulated or stimulated with IL-4 and IL-13 (20 ng/ml) for 48 hours after serum deprivation for 24 hours were used.

Chemotaxis assays
Chemotaxis assays were performed using Transwells with fibronectin coated inserts with a pore size of 8 μm (BD, Oxford, UK) as previously described.25 We placed 1 × 10^5 HLMC or 2 × 10^5 HMC-1 cells in 100 μl culture medium supplemented with 2% FCS into the top well, and 450 μl of supernatant from stimulated ASM or appropriate negative control in the bottom well. Checkerboard analysis was used to distinguish chemotactic from chemokinetic activity. Mast cells were preincubated with pertussis toxin (0.5 μg/ml) for 1 hour and 16 hours and with the tyrosine kinase inhibitor genistein (0.5 μg/ml) for 1 hour before the chemotaxis assays to assess the effect of these inhibitors on migration as previously described.26 Similarly, to assess the relative importance of individual chemokine receptors, we preincubated the cells with receptor blocking antibodies CCR3, CXC1R1, CXC1R3 and CXCR4 (R&D Systems) alone or in combination or isotype controls for 1 hour. After preincubation with inhibitors, the cells were washed and recounted to ensure that the number of cells added to the top chamber of the chemotaxis wells was consistent across conditions. The role of SCF was examined using the chemotaxis assay outlined above with ASM supernatants or recombinant SCF (50 ng/ml) in the bottom well preincubated with SCF neutralising antibody or an isotype control for 0.5 hours (R&D Systems).

We considered that ASM supernatants from non-asthmatics might affect the chemotactic activity of asthmatic ASM supernatants. To investigate this possibility we assessed mast cell chemotaxis towards Th1 and Th2 stimulated ASM supernatants from asthmatics after filtration with medium alone or with the corresponding Th1 or Th2 non-asthmatic ASM supernatants using the chemotaxis assay described above. In these chemotaxis assays the final concentration of the asthmatic ASM supernatant as a proportion of neat supernatant was 12.5–75%.

Concentration of mediators in conditioned ASM supernatants
The concentrations of several putative mast cell chemotaxins were measured in the Th2 stimulated ASM supernatants by commercial ELISA: CCL11 (BD), CXCL8 (BD), CXCL10 (BD), SCF (R&D), and TGF-β (R&D). In addition, we measured using ELISA, in Th1 and Th2 stimulated ASM supernatants, PGE_2 (Cayman Chemical, Ann Arbor, MI, USA) and IFN-β (R&D) as we considered that these mediators may play a role in modulating the migration of mast cells towards ASM supernatants. The concentration of mediators was corrected for cell number. The limits of detection were as follows: CCL11 (6.25 pg/ml), CXCL8 (3.1 pg/ml), CXCL10 (31.5 pg/ml), SCF (15.63 pg/ml), TGF-β (31.25 pg/ml), PGE_2 (15 pg/ml), and IFN-β (250 pg/ml).

Statistical analysis
HLMC and HMC-1 migration was expressed as the geometric mean (SE) fold difference in migration compared with control and the effect of blocking antibodies and inhibitors was expressed as mean (SE) % inhibition. Chemokine concentrations for CCL11 and CXCL8 were log normally distributed and were described as the geometric mean (logSE); the other chemokines or mediators were described as median (interquartile range). The mast cell chemotactic index for ASM stimulated with each condition was assessed by t test. Comparison between mast cell migration towards asthmatic versus non-asthmatic ASM stimulated with different conditions were analysed by ANOVA across conditions and by unpaired t tests for each condition separately. A value of p < 0.05 was taken as statistically significant.

RESULTS
Chemotactic activity for HMC-1 and HLMC by asthmatic ASM
Supernatants of ASM cells from asthmatic subjects (n = 7) were markedly more chemotactic for HMC-1 cells than those
Mast cell migration to ASM

from non-asthmatic subjects (n = 5) when the ASM cells were activated with IL-1β or IL-13 alone, IL-4 and IL-13 in combination, or with IL-1β, IL-4 and IL-13 in combination (fig 1A). The cell number from the asthmatic ASM cultures (3.2 (0.4) x10^5 cells/well) was increased compared with the non-asthmatic ASM cultures (1.1 (0.3) x10^5 cells/well; p = 0.001), so migration assays were performed towards the IL-1β, IL-4 and IL-13 stimulated ASM cell supernatants with the supernatant diluted to correct for the difference in cell number. Even after this correction the supernatants from the asthmatic ASM cultures (1.1 (0.3) x10^5 cells/well) was increased compared with media alone with or without isotype control, but not genistein (fig 2B).

HMC-1 chemotaxis to the asthmatic and non-asthmatic ASM supernatants was not affected by SCF neutralising antibody (data not shown), although HMC-1 chemotaxis to SCF (50 ng/ml) was inhibited by 97.6 (0.9)% (p<0.001, n = 3).

Checkerboard analysis confirmed that HMC-1 and HLMC migration towards Th2 stimulated asthmatic ASM supernatants was due to chemotaxis rather than chemokinesis. IL-1β, IL-4 and IL-13 in the medium at concentrations used to stimulate the ASM did not induce HMC-1 or HLMC migration (data not shown).

Chemokine expression by ASM

The concentration of CCL11 was increased in the ASM supernatants after stimulation with IL-13 alone or in combination with IL-4 and IL-1β (fig 3A). However, there was no difference in CCL11 concentration between ASM from asthmatic (n = 7) or non-asthmatic subjects (n = 5)

Figure 1

(A) Mean (SE) HMC-1 migration towards asthmatic and non-asthmatic ASM stimulated with IL-1β, IL-4 and IL-13 alone or in combination. Solid bars represent asthmatic ASM, hatched bars represent non-asthmatic ASM. (B) Mean (SE) HMC-1 and HLMC migration towards asthmatic and non-asthmatic ASM stimulated with IL-1β, IL-4 and IL-13 in combination after supernatants were corrected for cell number. Stated p values are for comparisons of mast cell migration towards asthmatic v non-asthmatic ASM; *p<0.05 for mast cell migration towards ASM conditioned media compared with control media. p values on the figure represent comparisons between asthmatics and non-asthmatics.

Similarly, IL-1β, IL-4 and IL-13 stimulated ASM supernatants from asthmatics (n = 6), after correction for cell number, were chemotactic for HLMC for HLMC (2.4-fold v control media; p = 0.002), but not ASM supernatant from non-asthmatics (n = 7; 1.4-fold; p = 0.2). There was a significant difference between HLMC migration towards asthmatic compared with non-asthmatic ASM supernatant (p = 0.03; fig 1B). HLMC migration towards asthmatic ASM stimulated with IL-1β, IL-4 and IL-13 in combination (n = 4) was inhibited by pertussis toxin; CCR3, CXCR1, CXCR3 and CXCR4 blocking antibodies in combination (51 (11)% inhibition; p = 0.043); and CCR3 and CXCR1 blocking antibodies in combination (59 (5)% inhibition; p = 0.006) compared with media alone with or without isotype control, but not genistein (fig 2B).

Figure 2

Mean (SE) % inhibition of (A) HMC-1 and (B) HLMC migration towards asthmatic ASM stimulated with IL-1β, IL-4 and IL-13 in combination after preincubation of mast cells with chemokine receptor blocking antibodies, pertussis toxin (PTx), or genistein *p<0.05.

Inhibition of migration to triple
stimulated asthmatic ASM (%)

-40 -20 0 20 40 60 80 100

CCR3

CXCR1

CXCR3

PTx 1h

PTx 16h

Genistein

CCR3 and CXCR1, 3,4

CCR3 and CXCR1

Inhibition of migration to triple
stimulated asthmatic ASM (%)

0 20 40 60 80 100

PTx 1h

PTx 16h

Genistein

CCR3 and CXCR1, 3,4

CCR3 and CXCR1

www.thoraxjnl.com
before or after stimulation once the supernatants were corrected for cell number. CXCL8 concentration was increased in the supernatants stimulated with IL-1β alone or in combination with IL-4 and IL-13. The CXCL8 concentration did not increase with IL-4 or IL-13 stimulation alone or in combination. Indeed, the CXCL8 concentration decreased after stimulation with IL-13 alone or in combination with IL-4 in the non-asthmatic but not in the asthmatic ASM supernatants (fig 3B).

In the ASM supernatants stimulated with IL-1β, IL-4 and IL-13, the concentrations of CXCL10 and TGFβ were low and not increased in those from asthmatic (52 (16–198) and 20 (2–27) pg/10⁵ cells) compared with non-asthmatic subjects (258 (72–506) and 36 (0–84) pg/10⁵ cells). Likewise, similar amounts of soluble SCF were detected in the unstimulated supernatants of ASM cells from seven asthmatic subjects (258 (72–506) and 36 (0–84) pg/10⁵ cells). Likewise, similar amounts of soluble SCF were detected in the unstimulated supernatants of ASM cells from seven asthmatic subjects (258 (72–506) and 36 (0–84) pg/10⁵ cells). Similarly, the amount of soluble SCF was low and not increased in those from asthmatic (52 (16–198) and 20 (2–27) pg/10⁵ cells) compared with non-asthmatic subjects (258 (72–506) and 36 (0–84) pg/10⁵ cells). Similarly, the amount of soluble SCF was low and not increased in those from asthmatic (52 (16–198) and 20 (2–27) pg/10⁵ cells) compared with non-asthmatic subjects (258 (72–506) and 36 (0–84) pg/10⁵ cells).

PGE₂ concentrations in ASM supernatants stimulated with IL-1β, IL-4 and IL-13 (Th2 stimulated) or IL-1β, TNF-α and IFN-γ (Th1 stimulated) were not significantly different in subjects with asthma (1 (4–37) ng/10⁵ cells) and 17 (13–22) ng/10⁵ cells) and non-asthmatic subjects (3 (2–30) ng/10⁵ cells) and 17 (15–20) ng/10⁵ cells respectively; p>0.05. IFN-β was undetectable in all of the Th1 and Th2 stimulated samples.

DISCUSSION
We have made several new and important observations. Supernatants from Th2 stimulated ASM from subjects with asthma, but not non-asthmatics, induced HLMC and HMC-1 migration. This was mediated predominantly through activation of CCR3 and CXCR1, even though ligands for these receptors, CCL11 and CXCL8 were not released preferentially by asthmatic cells stimulated with medium alone or with non-asthmatics. Importantly, ASM supernatants from non-asthmatic subjects inhibited the mast cell chemotactic activity of Th1 and Th2 stimulated ASM. These observations suggest that ASM from non-asthmatics release an inhibitory factor or factors that attenuate chemokine mediated migration of mast cells towards ASM.

In asthma the ASM bundle is infiltrated by mast cells. This is not a feature of eosinophilic bronchitis or normal controls, suggesting that mast cell-ASM interactions may be fundamental in the development of the asthma phenotype. It is therefore likely that mast cells migrate to ASM under the influence of chemokines released by ASM. Indeed, we found that supernatants from Th2 stimulated ASM from
asthmatics, but not non-asthmatic subjects, were chemotactic for HLMC and HMC-1 cells. Similarly, we confirmed that Th1 stimulated asthmatic ASM had increased mast cell chemotactic activity compared with non-asthmatic ASM. The lack of chemotactic activity in the Th2 stimulated ASM supernatants from the non-asthmatic subjects is consistent with the paucity of mast cells in the healthy ASM in bronchial biopsies. Blocking the chemokine receptors most commonly expressed by HLMC (CCR3, CXCR1, CXCR3 and CXCR4) alone had little effect on mast cell migration towards the Th2 stimulated asthmatic ASM but, importantly, migration was inhibited markedly by Gi inhibitor pertussis toxin and by blocking CCR3 in combination with CXCR1. HMC-1 mast cell migration towards Th2 stimulated ASM, was inhibited partly by genistein, a tyrosine kinase inhibitor, which suggests that chemokinins that activate this pathway such as TGF-β are unlikely to play a significant role in mast cell migration towards Th2 stimulated ASM. Taken together, our findings therefore suggest that activation of CCR3 and CXCR1 is the dominant mechanism mediating mast cell chemotaxis towards Th2 stimulated asthmatic ASM.

In this study we found, as reported by Hirst et al., that ASM released increased concentrations of the CCR3 ligand CCL11 after Th2 stimulation and the CXCR1 ligand CXCL8 after stimulation with IL-1β. Intriguingly, the concentrations of these chemokines were not different between asthmatic and non-asthmatic subjects. The concentrations of these chemokines in the ASM supernatants cannot therefore explain the differential migration towards Th2 stimulated asthmatic and non-asthmatic ASM supernatant. One possible explanation for this apparent anomaly is that other CCR3 and/or CXCR1 chemokines are released preferentially by asthmatic ASM. However, recombinant CCL11 and CXCL8 at similar concentrations to those released by Th2 stimulated non-asthmatic ASM are chemotactic for mast cells. Therefore, an alternative explanation for the different mast cell chemotactic activity between asthmatic and non-asthmatic ASM is that a mediator released by non-asthmatic ASM inhibits mast cell migration. In support of this view we found that the mast cell chemotactic activity of Th2 stimulated ASM was inhibited by titration with non-asthmatic ASM more markedly than titration with media alone. The inhibitory capacity of non-asthmatic ASM supernatant was not reserved to ASM stimulated with Th2 cytokines. Indeed, we found that mast cell migration towards Th1 stimulated non-asthmatic ASM was likewise inhibited by non-asthmatic ASM. We have considered a number of possible explanations for this phenomenon. The CXCR3 ligands are natural antagonists for CCR3 and therefore have the capacity to inhibit CCR3 mediated migration in the Th2 stimulated asthmatic ASM. However, the CXCL10 concentration was low and was not increased in the Th2 stimulated asthmatic ASM, so it is unlikely to have influenced mast cell migration. PGE2 secretion by asthmatic ASM in response to serum is reduced, but we found it was not different between asthmatics and non-asthmatics after Th1 or Th2 stimulation, in keeping with earlier findings.

This suggests that this mediator is unlikely to be responsible for the differential mast cell migration towards asthmatic and non-asthmatic ASM. IFN-β has been implicated in modifying chemokine release by ASM via an autocrine mechanism, but we were unable to detect IFN-β in samples from asthmatics or non-asthmatics stimulated with Th1 or Th2 cytokines, suggesting that this mediator is also unlikely to affect mast cell migration towards ASM supernatants. In addition, the non-asthmatic ASM was derived from airways of a similar division to bronchial biopsies and the ASM passage number did not differ between asthmatic and non-asthmatic subjects, which suggests that these technical issues cannot explain our findings. The mechanism by which non-asthmatic ASM inhibits mast cell migration therefore remains unexplained and needs to be further examined.

In this study mast cell migration towards Th2 stimulated asthmatic ASM was mediated by activation of CCR3 and CXCR1 in combination. However, it is likely that mast cell migration towards the ASM in asthma is under the control of several chemokins, and the relative importance of each of these varies depending upon the inflammatory environment within the individual asthmatic. In an earlier study we found that mast cell migration towards the ASM bundle in asthma was mediated via CXCL10 activation of CXCR3. ASM bundles in bronchial biopsies from asthmatics expressed CXCL10 constitutively and, following Th1 stimulation, asthmatic ASM preferentially released CXCL10. ASM activated by tryptase induced mast cell chemotaxis after the production of TGF-β1 and SCF. Th2 stimulation did not increase CXCL10, TGF-β1 and SCF expression and SCF was not involved in ASM induced mast cell chemotaxis, supporting the view that the type of inflammatory stimulus determines the dominant mast cell chemotaxin released by ASM. Further work is required to identify the important factors that may be involved in mast cell migration towards ASM stimulated by mast cells themselves. It also remains a possibility that it is mast cell precursors that are recruited by the ASM rather than mature airway cells. Interestingly, the expression of CCR3 on human bone marrow derived mast cells is similar to mature lung mast cells, suggesting that this chemokine receptor may be particularly important in the recruitment of progenitors to tissue.

In summary, our findings show that ASM from asthmatics, when stimulated with Th2 cytokines, is chemotactic for mast cells predominantly mediated by activation of mast cell CCR3 and CXCR1. Non-asthmatic ASM releases a mediator or mediators that inhibit mast cell migration towards both Th1 and Th2 stimulated asthmatic ASM. Specifically targeting mast cell migration into ASM bundles may provide a novel effective treatment for asthma.

ACKNOWLEDGEMENTS

The authors thank the theatre and pathology staff of the Sydney metropolitan hospitals and University Hospitals of Leicester for the supply of human lung tissue and the collaborative effort of the cardiopulmonary transplant team at St Vincent’s Hospital, Sydney. They also thank Mrs D Parker for technical support.

Authors’ affiliations

A Sutcliffe, D Kaur, L Woodman, P Bradding, CE Brightling, Institute for Lung Health, Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, UK

S Page, C LArmour, M Baraket, J M Hughes, Respiratory Research Group, Faculty of Pharmacy and Department of Pharmacology, University of Sydney, Australia

Supported by Asthma UK, DoH UK Clinician Scientist Scheme, NHMRC Australia.

Competing interests: none.

REFERENCES


www.thoraxjnl.com

LUNG ALERT

A revised score for predicting PE


Clinical variables were derived and validated in two independent cohorts of patients suspected of having a pulmonary embolism (PE). There were 965 patients in the derivation group and 756 in the validation group.

Univariate analysis identified 10 variables statistically associated with PE, eight of which remained significant in a multivariate analysis. Each variable was assigned points based on the regression coefficient: age ≥65 years (1 point), previous deep venous thrombosis or PE (3 points), surgery or fracture within 1 month (2 points), active malignancy (2 points), unilateral lower limb pain (3 points), haemoptysis (2 points), heart rate 75–94/min (3 points) or ≥95/min (5 points), and pain on lower limb venous palpation with unilateral oedema (4 points). Using this revised score in the validation dataset, 8% of low probability patients (0–3 points), 28% of independent probability patients (4–10 points), and 74% of high probability patients (≥11 points) had PE. This system may therefore assist in identifying patients who can be safely left untreated and those who require invasive investigations.

This study improves on the original Geneva score as it is standardised, entirely clinical (not requiring assessment of arterial blood gases), and has internal and external validity. However, the clinical utility now needs to be addressed in a prospective study.

M Rajpopat
Royal Free Hospital, London, UK; m.rajpopat@hotmail.com

www.thoraxjnl.com