Locally generated particulate pollution and respiratory symptoms in young children

N Pierse, L Rushton, R S Harris, C E Kuehni, M Silverman, J Grigg

Background: Particulate matter <10 μm (PM$_{10}$) from fossil fuel combustion is associated with an increased prevalence of respiratory symptoms in children and adolescents. However, the effect of PM$_{10}$ on respiratory symptoms in young children is unclear.

Methods: The association between primary PM$_{10}$ (particles directly emitted from local sources) and the prevalence and incidence of respiratory symptoms was studied in a random sample cohort of 4400 Leicestershire children aged 1–5 years surveyed in 1998 and again in 2001. Annual exposure to primary PM$_{10}$ was calculated for the home address using the Airviro dispersion model and adjusted odds ratios (ORs) and 95% confidence intervals were calculated for each μg/m3 increase.

Results: Exposure to primary PM$_{10}$ was associated with the prevalence of cough without a cold in both 1998 and 2001, with adjusted ORs of 1.21 (1.07 to 1.38) and 1.56 (1.32 to 1.84), respectively. For night time cough the ORs were 1.06 (0.94 to 1.19) and 1.25 (1.06 to 1.47), and for current wheeze 0.99 (0.88 to 1.12) and 1.28 (1.04 to 1.58), respectively. There was also an association between primary PM$_{10}$ and new onset symptoms. The ORs for incident symptoms were 1.62 (1.31 to 2.00) for cough without a cold and 1.42 (1.02 to 1.97) for wheeze.

Conclusion: In young children there was a consistent association between locally generated primary PM$_{10}$ and the prevalence and incidence of cough without a cold and the incidence of wheeze which was independent of potential confounders.

However, distance from the road does not take into account prevailing wind direction or differences in the mix and density of vehicles on main roads. In contrast, dispersion models calculate both the generation of primary PM$_{10}$ from local sources and its dispersion into adjacent areas, adjusting for wind direction and other meteorological parameters. For example, Leicester City Council (UK) along with several other European cities has, since 1998, used dispersion modelling for traffic planning. In this study we aimed to determine the association between locally generated primary PM$_{10}$, calculated using a dispersion model, and the prevalence and incidence of parent reported respiratory symptoms in young children. Respiratory symptom data from a cohort of preschool children surveyed in 1998 and again in 2001 were linked to modelled exposure to locally generated primary PM$_{10}$ at their home addresses, and evidence for a dose-response relationship was sought after adjusting for a number of potential confounding factors.

METHODS

Study population
A cohort of 4400 children aged 1–5 years was recruited in 1998 from a random sample of the Leicestershire Health Authority Child Health Database. Parents or guardians were sent a respiratory symptom questionnaire in 1998 and again in 2001. On each occasion, two repeat mailings of non-responders were subsequently sent out at 6 week intervals. The study was approved by the Leicestershire Health Authority ethics committee. Data from a subgroup of children surveyed in 1998 have previously been used in a study of the changing prevalence of preschool wheeze.

Exposure assessment
Exposure to locally generated primary PM$_{10}$ was assessed using the Indic-Airviro dispersion model Version 2.2.

There is now a consensus that exposure to particulate matter from the combustion of fossil fuels with a 50% cut off aerodynamic diameter of 10 μm (PM$_{10}$) exacerbates a range of respiratory conditions in children. Young children may be especially vulnerable to adverse effects of PM$_{10}$ since they have a higher minute ventilation relative to lung size, a higher prevalence of respiratory symptoms, and exhibit qualitative differences in lung growth. Indeed, associations between PM$_{10}$ and respiratory symptoms have been observed in the few studies that have focused on young children. Braun-Fahrländer et al were the first to report an association between the 6 week average concentration of total suspended particulate matter and an increased incidence of coughing episodes in a panel study of preschool children. In a cohort study, Brauer et al estimated exposure in the home to PM$_{2.5}$ in children aged 2 years of age and found a positive but nonsignificant association with wheeze and dry cough at night. Using the same methodology, Gehring et al found no association between PM$_{10}$ and parent reported wheeze in children aged 1 and 2 years. To date, no cohort study has examined the association between locally generated PM$_{10}$ and respiratory symptoms over the whole preschool age range. The benefits of local initiatives aimed at reducing emissions (such as congestion charging) in this vulnerable group are therefore unclear.

PM$_{10}$ may be categorised either by chemical composition, size (ultrafine to coarse), or origin, with the latter classifying “primary” PM$_{10}$ as particles emitted directly from combustion sources and “secondary” PM$_{10}$ as particles formed from the oxidation of sulphur and nitrogen dioxide in the atmosphere. In UK cities, direct primary emission of PM$_{10}$ from local traffic is the most important determinant of variations in individual exposure. Indeed, the proximity of the home to main roads has been used as a marker of individual exposure to the complex mix of gases, volatile organic compounds, and particles emitted by traffic.
Particulate pollution and young children

(Original document content)
RESULTS
The response rate from parents was 77.7% (3410/4400) in 1998 and 60.8% (2580/4245) in 2001. Between April 1997 and April 2001, 1265 children had moved address once, 438 twice, and 230 more than twice. The mean annual exposure to locally generated PM10 was calculated for 3045 children whose parents responded in 1998, and for 2303 in 2001. Both surveys showed a high prevalence of parent reported respiratory symptoms: for 1998 and 2001, respectively, the prevalence of cough without a cold was 25% and 25%, night time cough 31% and 29%, and current wheeze 25% and 14%. The prevalence of selected characteristics of the study group is shown in table 1.

The output of Airviro confirmed that primary PM10 was increased along local emission sources such as main roads (fig 1). Overall, the annual mean (25–75th percentile) primary PM10 concentration for the cohort was 1.47 (0.73–1.93) µg/m3 in 1998 and 1.33 (0.8–1.84) µg/m3 in 2001.

After adjusting for confounders, exposure to locally generated PM10 was associated with an increased prevalence of cough without a cold in both the 1998 and 2001 surveys (table 2), with evidence of a dose-response effect (fig 2). For prevalence of night time cough the ORs were slightly lower in both surveys. Current wheeze was not associated with PM10 before adjusting for confounders (table 2). After adjustment there was a positive association in 2001 (table 2). The effect of PM10 on health outcomes did not depend on whether or not children were exposed to environmental tobacco smoke or went to nursery care (all interaction tests with p>0.1).

We analysed the association between mean exposure to PM10 from 1998 to 2001 and incident symptoms in children who were initially asymptomatic (table 3). There was a strong association between PM10 and adjusted incident cough without a cold, and somewhat weaker associations with incident wheeze and incident night cough (table 3). Analysis by age did not show evidence for an effect modification, with adjusted ORs for cough without a cold of 1.51 (1.12 to 2.04) in children aged 1–2.99 years and 1.71 (1.26 to 2.31) in children aged 3–4.99 years. For night cough, the ORs for younger and older children were 1.24 (0.94 to 1.66) and 1.14 (0.83 to 1.55) respectively, and for wheeze 1.43 (0.91 to 2.26) and 1.39 (0.86 to 2.25). We found no association between PM10 and persistence of symptoms in children who were symptomatic in 1998 (data not shown), but statistical power for this analysis was very low (numbers of children in the adjusted models for persistence of symptoms were n = 406 for cough without a cold, n = 466 for night cough, and n = 221 for wheeze).

DISCUSSION
Using a dispersion model to estimate differences in exposure of homes of young children to locally generated primary PM10 we found a strong association between exposure and the prevalence and incidence of cough without a cold and night cough which was independent of potential confounders. Furthermore, there was clear evidence for a dose-response relationship. The evidence for an association between primary PM10 and the prevalence and incidence of current wheeze was less consistent. These data are compatible with a German cohort study which estimated PM exposure at the home address of children at 1 year of age and

Table 2 Association between mean annual exposure of the home address to locally generated primary PM10 and prevalence of respiratory symptoms in young children

<table>
<thead>
<tr>
<th></th>
<th>Unadjusted OR†</th>
<th>95% CI</th>
<th>n‡</th>
<th>Adjusted OR†</th>
<th>95% CI</th>
<th>n‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough without a cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1.22</td>
<td>1.10 to 1.36</td>
<td>2567</td>
<td>1.21</td>
<td>1.07 to 1.38</td>
<td>2164</td>
</tr>
<tr>
<td>2001</td>
<td>1.46</td>
<td>1.27 to 1.68</td>
<td>2301</td>
<td>1.56</td>
<td>1.32 to 1.84</td>
<td>1756</td>
</tr>
<tr>
<td>Night time cough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>1.11</td>
<td>1.01 to 1.23</td>
<td>2579</td>
<td>1.06</td>
<td>0.94 to 1.19</td>
<td>2174</td>
</tr>
<tr>
<td>2001</td>
<td>1.25</td>
<td>1.09 to 1.43</td>
<td>2318</td>
<td>1.25</td>
<td>1.06 to 1.47</td>
<td>1771</td>
</tr>
<tr>
<td>Current wheeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>0.99</td>
<td>0.89 to 1.10</td>
<td>2584</td>
<td>0.99</td>
<td>0.88 to 1.12</td>
<td>2175</td>
</tr>
<tr>
<td>2001</td>
<td>1.09</td>
<td>0.93 to 1.30</td>
<td>2331</td>
<td>1.28</td>
<td>1.04 to 1.58</td>
<td>1774</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval.
†Adjusted for confounding variables in table 1.
‡Per µg/m3 increase in locally generated primary PM10.
§Number of responses.
reported ORs of 1.43 for cough without infection and 1.39 for dry cough at night for each 1.5 μg/m³ increase in PM2.5. Our study extends these data by showing that the association with cough is present across the preschool age range. By 2001 some of the children in our cohort had reached school age. In this older age group the published evidence for an association between PM10 and cough is conflicting. The 12 Community Southern California cohort study23 found no association between PM10 and cough. In contrast, Braun-Fahrländer et al24 reported a strong significant association between PM10 and both chronic and nocturnal dry cough in a cross sectional survey of 4470 Swiss children aged 6–15 years. Further surveys of the Leicester cohort should help to clarify whether this association continues throughout childhood.

Although we found that PM10 was associated with the prevalence of cough without a cold, and there was a strong association with incident cough in children who were asymptomatic in the 1998 survey, we did not assess whether this type of cough affected the quality of life of children and their parents. However, preschool cough is not necessarily a trivial condition, as indicated by a recent study of Leicestershire general practitioners which reported that preschool children attending with “non-asthmatic” cough suffered significant sleep disruption and decreased activity levels.25 Unfortunately, we did not have the information to quantify children with cough into groups of different severity.

The association between modelled PM10 exposure and wheeze was inconsistent between surveys—that is, while there was no association with prevalent wheeze in 1998, there was evidence for an association with prevalent wheeze in 2001. Similarly, there is no consistency in the published studies on PM10 and prevalence of wheezing disorders in children. On the one hand, Nicolai et al26 reported an increased prevalence of current wheeze (adjusted OR 1.66) in children aged 9–11 years living within 50 metres of roads with high traffic flows, and Venn et al27 found an increased prevalence of wheeze in a subgroup of a UK cohort of children aged 4–11 years living within 150 metres of a main road. On the other hand, other population based cohort studies have found no significant effect of PM10 on current wheeze.28 29 30 Indeed, the most recent study of young school age children29 found no association between living near a main road and the prevalence of asthma. In preschool children, Edwards et al30 reported that children admitted to hospital with asthma were more likely to live in areas of high traffic flow (compared with those admitted for non-respiratory reasons), and it is possible that parent reported wheeze is an imprecise descriptor of preschool asthma. Alternatively, modelled local primary PM10 may not reflect the size or composition of particles that upregulate cellular mechanisms associated with wheeze. However, we did find an association between primary PM10 and new onset (incident) wheeze in 2001, which supports the speculation that early exposure to PM10 may play a causal role in the development of asthma, especially in children with a genetic predisposition to attenuated antioxidant defences.31 Further study of our cohort will be required to establish if new onset wheezing in the 2001 survey is atopic asthma, and if it is associated with mutations in the genes involved in the induction of pulmonary antioxidant defence.32

There are important limitations to our study. Although PM10 is a biologically plausible mediator of health effects,33 causation cannot be assumed. Fossil fuel particles do, however, penetrate into the airways of children. In a previous study we found aggregates of carbonaceous nanoparticles (<0.01 μm³) in alveolar macrophages from healthy infants and children living in Leicestershire.34 There is debate about the size fraction of PM10 responsible for health effects, with speculation that nanoparticles are the most damaging.35 In European cities where traffic is the major source of PM10, there is a close correlation between nanoparticle number and PM10 concentration.36 It is therefore likely that modelled primary PM10 reflects exposure to traffic associated nanoparticles, but not necessary to larger “coarse” particles (PM2.5–10) which are mostly derived from soil and sea salts.37

A second limitation of the study is that there may be an unrecognised confounding variable with a high spatial correlation with traffic pollution, especially one associated with poor socioeconomic status. Indeed, compatible with UK data,28 we found a significant correlation between modelled exposure to primary PM10 and Townsend score (r = 0.41 in 1998, and r = 0.43 in 2001, p<0.0001). Thus, adjusting our data for a spatial measure of deprivation would have resulted in an underestimation of the effect of PM10. For example, the association between PM10 exposure and cough without a cold in 2001 fell from 1.56 to 1.42 (1.18 to 1.72) when the Townsend score was included as a confounding variable.

Thirdly, we did not estimate the effect of “imported” PM10 blown into Leicestershire from other counties and countries. Imported particles may also affect respiratory health, but we could not detect this since concentrations would be close to uniform over the spatial area of the cohort over a 12 month period. Fourthly, although Airviro performs well in modelling the spatial distribution of traffic associated carbon monoxide38 which in turn is a valid marker for traffic associated PM10, we did not validate modelled data by direct measurement. Finally, any estimate of PM10 at the home address can only approximate individual exposure. We did not record time-activity data, but had recorded whether children attended a nursery. The strength of association between PM10 and the health outcomes did not differ whether or not the children went to nursery care. One explanation is that the total time spent in nursery per week is negligible compared with the time spent at or around home in this age group.

In summary, in a cohort of young children we found a consistent association between exposure to locally emitted

<p>| Table 3 Association between exposure of the home address to locally generated primary PM10 and incident cough and wheeze (defined as not present in the 1998 survey and present in the 2001 survey versus no symptoms in both surveys) |</p>
<table>
<thead>
<tr>
<th>Unadjusted</th>
<th>Adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR†</td>
<td>95% CI</td>
</tr>
<tr>
<td>Cough without a cold</td>
<td>1.68</td>
</tr>
<tr>
<td>Night time cough</td>
<td>1.21</td>
</tr>
<tr>
<td>Wheeze</td>
<td>1.22</td>
</tr>
</tbody>
</table>

OR, odds ratio; CI, confidence interval. *Adjusted for confounding variables in table 1. †Per μg/m³ increase in locally generated primary PM10. ‡Number of responses.

www.thoraxjnl.com
primary PM$_{10}$ and the prevalence and incidence of cough without a cold and night time cough, and incidence of wheeze. We conclude that a reduction in locally generated primary PM$_{10}$ may have significant health benefits in young children, and that linking paediatric cohort data to pollution dispersion models may help in planning local air quality initiatives.

ACKNOWLEDGEMENTS
The authors thank Catherine Mallon, Adrian Russell and Neil Cooper of the Leicester City Council for the Airviro analysis, Adrian Brooke for helpful discussions, and Tony Davies of Leicestershire Health for help in accessing the Leicestershire Health Authority Child Health Database.

Authors’ affiliations
N Pierse, L Rushton, R S Harris, MRC Institute for Environment and Health, University of Leicester, Leicester, UK
C E Kuehni, Department of Social and Preventive Medicine, University of Berne, Switzerland
M Silverman, J Grigg, Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
Nevil Pierse was supported by a grant from the UK Department of Health

Competing interests: none declared.

REFERENCES