Inhaled corticosteroids and long term outcome in adults with asthma

The concept that treatment with inhaled corticosteroids (ICS) may improve long term lung function by reversing or minimising the effects of airway remodelling remains an attractive one but, until now, unproven. It is therefore with much interest that we read the publications of two observational studies by Lange et al and by Dijkstra et al. Both groups of authors hypothesised that asthmatic individuals continuously treated with ICS would have a less pronounced decline in forced expiratory volume in 1 second (FEV1) than those not treated with ICS, and their studies indeed suggest that long term treatment with ICS in asthmatic adults is associated with a more favourable decline in FEV1 with age compared with the natural course of the disease.

Obviously, the most interesting next question is to what extent further improvement in FEV1 is possible. Unfortunately neither study addressed the issue of possible additional anti-inflammatory treatment. The assessment of FEV1 after maximal bronchodilation and a course of systemic corticosteroids in these groups of patients would have been most interesting because it might show the maximal attainable functional outcome in adults who have had asthma for many years.

Similarly, one could study growth of lung function in childhood and adolescence to assess whether this is affected by asthma and can be reversed by anti-inflammatory treatment.

Lange et al, Dijkstra et al, and the accompanying editorial by Ernst refer to the CAMP study which showed that ICS treatment may not even improve FEV1 in children with mild asthma compared with placebo. The CAMP study did indeed assess lung growth from bronchodilator FEV1, as the primary outcome variable, but it lacked the proper design to address this issue fully because bronchodilation was not maximal and ICS treatment was started in a daily dose of 400 μg tapered off or stopped based on symptoms. Because treatment based on symptoms does not take into account of—and is likely to underestimate—the degree of inflammation, such a study design is probably biased towards underestimation of the maximal attainable level of function.

In our own study we observed that FEV1 after maximal bronchodilation was normalised in children with moderately severe asthma who continued to inhale 600 μg budesonide daily, and also when they had become completely asymptomatic. This suggests that ICS treatment can completely normalise FEV1. Whether similar favourable effects of ICS on bronchodilator FEV1 can also be demonstrated in adult patients with long term asthma is unknown.

We think that future long term outcome studies in adults with asthma should try to estimate the maximal attainable lung function.

P J F M Merkus, J C de Jongste
Sophia Children’s Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands

Correspondence to: Dr P J F M Merkus, Sophia Children’s Hospital, Erasmus University Medical Centre, Rotterdam 3015 GJ The Netherlands; p.j.f.m.merkus@erasusmc.nl

Competing interests: none declared.

References

Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1 polymorphisms

High altitude pulmonary oedema (HAPE) is a severe form of altitude illness that develops in travellers on rapid ascent to or physical exertion at altitudes of >2500 m. The disease is characterised by pulmonary hypertension, uneven vasoconstriction, and over perfusion which is thought to cause stress failure of pulmonary capillaries leading to alveolar flooding.1 Since uneven pulmonary vasoconstriction appears to play an important part in the development of HAPE, the genes involved in maintaining pulmonary vascular tone—for example, angiotensin converting enzyme (ACE) and endothelin-1 (ET-1)—could be possible candidates for HAPE.

Earlier studies showed that the selective pressure of hypobaric hypoxia acted in favour of those alleles of ACE and ET-1 which were beneficial in maintaining a healthy state at high altitude.2–4 On the other hand, unfavourable alleles are likely to contribute to the susceptibility to HAPE. This hypothesis is supported by an earlier report on the allelic variants of endothelial nitric oxide synthase gene.5

We therefore investigated ACE insertion/deletion (ID) (GenBank accession no X62855) and ET-1 5′-untranslated region (UTR) microsatellite (CT)n (GenBank accession no J05008), −3A/−4A (rs10478964), G2288T (rs2070699), and 57193Ains (rs3370) polymorphisms in 64 patients with HAPE (HAPE-p) and in 53 resistant controls (HAPE-r).

The HAPE-p were examined to exclude the possibility of any previous cardiopulmonary diseases. The subjects were genotyped for the five polymorphisms of the two genes using primers and conditions shown in table S1 (available online at http://www.thoraxjnl.com/supplemental). The plasma ACE levels were measured by a kinetic method using N-[2-furyl(acylamino)-Phe-Gly-Gly as substrate. The plasma ET-1 levels were determined by ELISA (Assay Designs, Ann Arbor, USA). SPSS statistical software for Windows (release 10), EPIINFO 6, and SNP Alysie program (Version 3.1, Dynacomp, Mobara-shi, Japan) were used to perform the statistical analysis.

The mean (SD) ACE activity and ET-1 levels were significantly higher in HAPE-p than in HAPE-r (84.6 (26.2) vs 40.7 (12.1) U/l and 8.0 (2.5) vs 3.5 (0.7) pg/ml, respectively; both p<0.0001). Furthermore, a direct relationship was observed between ACE activity and ET-1 levels in HAPE-p and HAPE-r (r = 0.31, p = 0.03 and r = 0.32, p = 0.02, respectively), which reflects their interaction.

ACE generates angiotensin II which induces ET-1 transcription and secretion in vitro in a variety of cell types including endothelial and vascular smooth muscle cells.6 ET-1 is also involved in the regulation of ACE activity in vivo independently of ACE expression.7

The polymorphisms were Hardy-Weinberg equilibrium in both groups and are shown in table 1. The ID+DD and GT+TT genotypes of ACE ID and ET-1 G2288T polymorphisms were over-represented in HAPE-p (p = 0.03 and p = 0.002, respectively), with D and T alleles being more frequent in HAPE-p than HAPE-r. The (CT)n, (CA)n repeats were segregated and recognised as shorter (13–30) and longer (31–45) based on our earlier observation.8 However, unlike in our previous report, the shorter (13–30) alleles did not correlate with ET-1 levels.

Analysis of the possible genotype combinations between the five polymorphisms showed that there were significantly fewer genotype combinations II/II and GT/GT in HAPE-p than in HAPE-r (p = 0.02 and p = 0.002, respectively). The longer repeats/