Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis

G J Rodrigo, J A Castro-Rodriguez

Background: Current guidelines recommend the use of a combination of inhaled β2 agonists and anticholinergics, particularly for patients with acute severe or life threatening asthma in the emergency setting. However, this statement is based on a relatively small number of randomised controlled trials and related systematic reviews. A review was undertaken to incorporate the more recent evidence available about the effectiveness of treatment with a combination of β2 agonists and anticholinergics compared with β2 agonists alone in the treatment of acute asthma.

Methods: A search was conducted of all randomised controlled trials published before April 2005. Results: Data from 32 randomised controlled trials (n = 3611 subjects) showed significant reductions in hospital admissions in both children (RR = 0.73; 95% CI 0.63 to 0.85, p = 0.0001) and adults (RR = 0.68; 95% CI 0.53 to 0.86, p = 0.002) treated with inhaled anticholinergic agents. Combined treatment also produced a significant increase in spirometric parameters 60–120 minutes after the last treatment in both children (SMD = −0.54; 95% CI −0.28 to −0.81, p = 0.0001) and adults (SMD = −0.36; 95% CI −0.23 to −0.49, p = 0.00001).

Conclusions: This review strongly suggests that the addition of multiple doses of inhaled ipratropium bromide to β2 agonists is indicated as the standard treatment in children, adolescents, and adults with moderate to severe exacerbations of asthma in the emergency setting.

Methods

Search strategy and selection criteria

The search was conducted using five search strategies to identify potentially relevant trials. (1) MEDLINE (1966–April 2005), EMBASE (1974–April 2005) and CINAHL (1982–April 2005) databases were searched using the following MeSH, full text and keyword terms: emergency OR acute asthma OR bronchodilators OR nebulisers OR β2 agonists OR corticosteroids OR ipratropium OR ritodrine OR ipratropium bromide OR tiotropium. (2) An advanced search of the Cochrane Controlled Trials Register (first quarter 2005) was completed using the above search strategy to identify any additional trials. (3) References from included studies, reviews, and texts were searched for citations. (4) Hand searching of the top 20 respiratory journals was completed. (5) We made inquiries to Boehringer Ingelheim regarding other published or unpublished trials supported by the company. Trials published solely in abstract form were excluded.

Included studies met the following criteria: (1) Target population: children (18 months to 17 years) and adults (≥18 years) with acute exacerbations of asthma presenting to an ED or equivalent care setting. (2) Intervention: single or repeated doses of inhaled anticholinergic agents given in combination with inhaled β2 agonists compared with inhaled β2 agonists alone. Studies involving the use of atropine were excluded. (3) Design: randomised and placebo controlled trials without language restriction. (4) Primary outcomes: admission to hospital and spirometric testing (final absolute values or change from baseline 60–120 minutes after the last combined anticholinergic and β2 agonist inhalation). Because the peak bronchodilator effect after the administration of anticholinergics occurs within 1–2 hours, it is reasonable to expect significant improvement during this time. Secondary outcome measures were clinical score, duration of treatment in the ED, respiratory rate, oxygen saturation, heart rate, and side effects.

Data abstraction and validity assessment

Titles, abstracts, and citations were independently reviewed by two reviewers (GJR and JACR) to assess potential relevance for full review. From the full text, both reviewers independently assessed studies for inclusion based on the criteria for population, intervention, study design and outcomes. Data extraction included the following items: (1) Population: age, sex, number of patients studied, patient demographic data withdrawals. (2) Intervention: agent, dose, route of delivery, and duration of treatment. (3) Control: concurrent treatments. (4) Outcomes. (5) Design: method of randomisation and allocation concealment. Any disagreement over study inclusion was resolved by consensus. The methodological quality of each trial was evaluated using the modified Jadad rating system.

Abbreviations: CCS, corticosteroids; ED, emergency department; FEV1, forced expiratory volume in 1 second; NNT, number of patients needed to treat; PEF, peak expiratory flow; RR, relative risk; SMD, standardised mean difference; WMD, weighted mean difference.
using the 5-point scale (0 = worst and 5 = best) described by Jadad et al. This instrument assesses the adequacy of randomisation, blinding, and the handling of withdrawals and drop outs.

Data analysis

The data were combined in the meta-analysis by means of common relative risk (RR) and 95% confidence intervals (CI). The number of patients needed to treat (NNT) to prevent the additional need for corticosteroids was calculated in an attempt to explain the findings. When heterogeneity was found, subgroup analyses were performed using Review Manager 4.2.7 software (Cochrane Review Manager, Cochrane Collaboration, Oxford, UK, 2004).

RESULTS

A total of 88 studies were examined in full text for possible inclusion, 56 of which were excluded for the following reasons: non-randomised trials (n = 4), non-acute asthma (n = 14), anticholinergics alone were studied (n = 6), hospitalised patients (n = 8), use of atropine (n = 5), chronic asthma (n = 18), and use of intravenous route (n = 1). A total of 32 randomised controlled trials (16 including children and adolescents16–18 and 16 including adults19–31) were therefore selected for further analysis (tables 1 and 2). Five studies were supported by Boehringer Ingelheim.17–18,24–26 Data for 3611 subjects (1564 children and adolescents, 2047 adults) were available for meta-analysis. There was a total agreement between the two independent reviewers on inclusion of studies and Jadad study quality grading. The anticholinergic agent used was ipratropium bromide in 29 studies,12–27 34–38 40 42 43 oxitropium bromide in two studies, 39 41 and glycopyrrolate in one study.32 Trials were grouped according to the intensity of the anticholinergic treatment: those testing the addition of a single dose of an anticholinergic agent to β2 agonist inhalations were named single dose protocols, and those testing more than one dose were grouped as multiple dose protocols. Thirteen protocols were named single dose protocols, and those testing more than one dose of anticholinergic. Of these, 18 studies used more than one dose of anticholinergic. R

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Language and country</th>
<th>Jadad score</th>
<th>No (and age of patients)</th>
<th>Mean baseline severity</th>
<th>Dose of β agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back et al. (1985)15</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>25 (6–17 y)</td>
<td>FEV1 <50%</td>
<td>S, 0.05 mg/kg q20 min Neb >6</td>
<td>IB, 0.25 mg Neb >1</td>
<td>No</td>
</tr>
<tr>
<td>Cook et al. (1985)16</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>4</td>
<td>30 (18 m–12 y)</td>
<td>NR</td>
<td>F, 0.125–0.5 ml Neb >1</td>
<td>IB, 1–2 ml Neb >1</td>
<td>No</td>
</tr>
<tr>
<td>Reisman et al. (1988)16</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>24 (5–15 y)</td>
<td>FEV1 <55%</td>
<td>S, 0.05 mg q20 min Neb <6</td>
<td>IB, 0.25 mg Neb >3</td>
<td>No</td>
</tr>
<tr>
<td>Watson et al. (1988)16</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>31 (6–17 y)</td>
<td>FEV1 30–70%</td>
<td>F, 0.62 mg q60 min Neb >2</td>
<td>IB, 0.25 mg q60 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Phanichyakam et al. (1990)18</td>
<td>R, DB</td>
<td>E, Thailand</td>
<td>1</td>
<td>20 (4–15 y)</td>
<td>NR</td>
<td>T, 0.5 mg MDI >1</td>
<td>IB, 0.04 mg MDI >1</td>
<td>No</td>
</tr>
<tr>
<td>Peterson et al. (1994)19</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>163 (5–12 y)</td>
<td>FEV1 <70%</td>
<td>S, 3 mg q45 min Neb >2</td>
<td>IB, 0.25 mg q45 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Schul et al. (1995)20</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>80 (5–17 y)</td>
<td>FEV1 ≥50%</td>
<td>S, 0.15 mg/kg q20 min Neb >3</td>
<td>IB, 0.15 mg/kg q20 min</td>
<td>No</td>
</tr>
<tr>
<td>Qureshi et al. (1997)21</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>90 (6–18 y)</td>
<td>FEV1 ≥50%</td>
<td>S, 0.15 mg/kg q30 min Neb >3</td>
<td>IB, 0.5 mg Neb >2</td>
<td>Yes</td>
</tr>
<tr>
<td>Calvo et al. (1998)22</td>
<td>R, DB</td>
<td>Sp, Chile</td>
<td>3</td>
<td>80 (18–55 y)</td>
<td>PEF <80%</td>
<td>S, 0.07 mg/kg q30 min Neb</td>
<td>IB, 0.25 mg/kg q30 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Ducharme et al. (1999)23</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>5</td>
<td>298 (2–18 y)</td>
<td>Mild to moderate</td>
<td>S, 0.07 mg/kg q30 min Neb</td>
<td>IB, 0.25 mg/kg q30 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Qureshi et al. (1998)24</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>434 (2–18 y)</td>
<td>Moderate to severe</td>
<td>S, 2.5–5 mg q20 min Neb >2</td>
<td>IB, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Zanc et al. (1999)25</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>427 (1–7 y)</td>
<td>Moderate to severe</td>
<td>S, 2.5 mg q20</td>
<td>IB, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Benito Fernandez et al. (2000)26</td>
<td>R, SB</td>
<td>Sp, Spain</td>
<td>5</td>
<td>102 (5–16 y)</td>
<td>Severe</td>
<td>S, 0.2 mg/kg q30 min Neb >2</td>
<td>IB, 0.25 mg q30 min</td>
<td>Yes</td>
</tr>
<tr>
<td>SierroMonge et al. (2002)27</td>
<td>R, DB</td>
<td>Sp, Mexico</td>
<td>2</td>
<td>30 (8–15 y)</td>
<td>Moderate to severe</td>
<td>S, 0.02 mg q10 min Neb >2</td>
<td>IB, 0.2 mg q10 min</td>
<td>No</td>
</tr>
<tr>
<td>Timot et al. (2002)28</td>
<td>R, F</td>
<td>France</td>
<td>3</td>
<td>114 (2–15 y)</td>
<td>Severe</td>
<td>S, 0.15 mg/kg q20 min Neb >2</td>
<td>IB, 0.25 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Sharma et al. (2004)29</td>
<td>R, E</td>
<td>India</td>
<td>2</td>
<td>50 (6–14 y)</td>
<td>Moderate to severe</td>
<td>S, 0.15 mg/kg q20 min Neb >2</td>
<td>IB, 0.25 mg q20 min</td>
<td>No</td>
</tr>
</tbody>
</table>

R, randomised; SB, single blind; DB, double blind; E, English; Sp, Spanish; F, French; FEV1, forced expiratory volume in 1 second; PEF, peak expiratory flow; NR, not reported; S, salbutamol; F, fenoterol; T, terbutaline; IB, ipratropium bromide; CCS, systemic corticosteroids.
in one trial.11 One study did not provide spirometric data or admission rates.12 Clinical scores were used in only a few studies and the reporting of adverse effects was variable.

Hospital admissions

Ten studies accumulating 1786 children and adolescents reported hospital admissions.14–20 21 24 25 28 27 One study tested two protocols (single and multiple fixed dose)14 and three trials reported data stratified by asthma severity (moderate and severe patients).22–24 At the end of treatment patients who received inhaled β2 agonists and anticholinergics had a significantly lower admission rate (fig 1). The NNT was 13 (95% CI 9 to 28), indicating that 13 children needed to be treated with β2 agonists and anticholinergics to prevent one admission. There was no evidence of systematic bias identified by the measure of funnel asymmetry. Also, no significant heterogeneity was demonstrated, which accepts the null hypothesis of similar treatment effects. Stratification on the basis of baseline severity (moderate vs severe) and the intensity of the anticholinergic protocol

Table 2 Characteristics of trials included in the review

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Design</th>
<th>Language and country</th>
<th>Jadad score</th>
<th>No (and age of) patients</th>
<th>Mean baseline severity</th>
<th>Dose of β agonist</th>
<th>Dose of anticholinergic</th>
<th>CCS use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodrigo (1995)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>2</td>
<td>28 (>18 y)</td>
<td>FEV1 < 75%</td>
<td>F, 1 mg Neb</td>
<td>B, 0.5 mg Neb</td>
<td>No</td>
</tr>
<tr>
<td>Rodrigo (1997)</td>
<td>R, DB</td>
<td>E, Canada</td>
<td>4</td>
<td>148 (>18 y)</td>
<td>FEV1 < 70%</td>
<td>F, 1.25 mg Neb</td>
<td>B, 0.5 mg Neb</td>
<td>Yes</td>
</tr>
<tr>
<td>Higgins et al (1998)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>40 (>18 y)</td>
<td>PEF < 30%</td>
<td>S, 5 mg q20 min</td>
<td>B, 0.5 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>O’Driscoll et al (1998)</td>
<td>R, DB</td>
<td>E, England</td>
<td>2</td>
<td>56 (>18 y)</td>
<td>PEF < 35%</td>
<td>S, 10 mg Neb</td>
<td>B, 0.5 mg Neb</td>
<td>Yes</td>
</tr>
<tr>
<td>Summers and Turato (1998)</td>
<td>R, DB</td>
<td>E, Australia</td>
<td>3</td>
<td>76 (18–70 y)</td>
<td>PEF < 60%</td>
<td>S, 5 mg Neb</td>
<td>B, 0.5 mg Neb</td>
<td>No</td>
</tr>
<tr>
<td>Gudkin and Emerson (1997)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>3</td>
<td>125 (>18 y)</td>
<td>FEV1 < 75%</td>
<td>S, 2.5 mg q60 min</td>
<td>B, 0.5 mg q60 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (1995)</td>
<td>R, DB</td>
<td>Sp, Uruguay</td>
<td>3</td>
<td>22 (18–50 y)</td>
<td>PEF < 50%</td>
<td>S, 4.0 mg q10 min</td>
<td>B, 0.08 mg q10 min</td>
<td>No</td>
</tr>
<tr>
<td>Karpel et al (1996)</td>
<td>MC, R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>384 (18–55 y)</td>
<td>FEV1 < 60%</td>
<td>S, 2.5 mg q25 min</td>
<td>B, 0.5 mg q25 min</td>
<td>No</td>
</tr>
<tr>
<td>FitzGerald et al (1997)</td>
<td>MC, R, DB</td>
<td>E, Canada</td>
<td>3</td>
<td>342 (18–50 y)</td>
<td>FEV1 < 70%</td>
<td>S, 3 mg Neb</td>
<td>B, 0.5 mg Neb</td>
<td>Yes</td>
</tr>
<tr>
<td>Garrett et al (1999)</td>
<td>TC, R, DB</td>
<td>E, New Zealand</td>
<td>4</td>
<td>338 (18–55 y)</td>
<td>FEV1 < 70%</td>
<td>S, 2.5 mg q30 min</td>
<td>B, 0.5 mg q30 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Lin et al (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>4</td>
<td>55 (>18 y)</td>
<td>PEF < 200 l/min</td>
<td>S, 2.5 mg q30 min</td>
<td>B, 0.5 mg q30 min</td>
<td>No</td>
</tr>
<tr>
<td>Komi et al (1999)</td>
<td>MC, R</td>
<td>E, Japan</td>
<td>3</td>
<td>64 (>18 y)</td>
<td>FEV1 < 70%</td>
<td>F, 0.2 mg q1 min</td>
<td>B, 0.1 mg q1 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Weber et al (1999)</td>
<td>R, DB</td>
<td>E, USA</td>
<td>5</td>
<td>67 (>18 y)</td>
<td>FEV1 < 70%</td>
<td>S, 1.0 mg q1 h</td>
<td>B, 1.0 mg q1 h</td>
<td>No</td>
</tr>
<tr>
<td>Nakano et al (2000)</td>
<td>R, SB</td>
<td>E, Japan</td>
<td>4</td>
<td>74 (>18 y)</td>
<td>PEF < 50%</td>
<td>S, 0.4 mg q20 min</td>
<td>B, 0.04 mg q20 min</td>
<td>Yes</td>
</tr>
<tr>
<td>Rodrigo and Rodrigo (2001)</td>
<td>R, DB</td>
<td>E, Uruguay</td>
<td>5</td>
<td>180 (18–50 y)</td>
<td>FEV1 < 50%</td>
<td>S, 0.4 mg q10 min</td>
<td>B, 0.08 mg q10 min</td>
<td>No</td>
</tr>
<tr>
<td>Agarwal et al (2002)</td>
<td>R</td>
<td>E, India</td>
<td>2</td>
<td>48 (13–50 y)</td>
<td>PEF < 50%</td>
<td>S, 5 mg q60 min</td>
<td>B, 0.5 mg Neb</td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1 Pooled relative risk for hospital admission (with 95% confidence interval) of eligible studies in children comparing the addition of anticholinergic agents to β2 agonists (treatment) with β2 agonists alone (control). Trials stratified according to intensity of anticholinergic treatment (single or multiple fixed dose protocols) and asthma severity (moderate or severe patients).
(single v multiple fixed dose protocol) suggested a trend towards a reduced risk of admission in children with the most severe asthma attack and treated with multiple doses of anticholinergics. The NNT to prevent one admission among severe patients was 7 (95% CI 4 to 16). The hospital admission rate did not change when we excluded studies without explicit admission criteria (RR = 0.73; 95% CI 0.62 to 0.85, I² = 0%). The use of systemic CCS did not modify this outcome (RR = 0.69; 95% CI 0.58 to 0.81).

Nine trials totalling 1556 adults with acute asthma reported hospital admissions. One trial reported data stratified on asthma severity (moderate and severe patients). There was a significant reduction in the hospital admission rate favouring anticholinergic use (fig 2). The NNT was 14 (95% CI 9 to 30). There was no evidence of systematic bias identified by the measure of funnel plot asymmetry. Again, no significant heterogeneity was demonstrated. Stratification on the basis of baseline severity (moderate v severe) and the intensity of the anticholinergic protocol (single v multiple fixed dose protocols) suggested a trend towards a reduced risk of admission in adults with the most severe asthma attack and treated with multiple doses of anticholinergics (fig 2). Intensity of anticholinergic treatment greatly influenced the reduction in hospital admission; a greater reduction was seen in trials using three or more doses of anticholinergic agents (RR = 0.53; 95% CI 0.36 to 0.76, p = 0.0006; NNT = 6; 95% CI 4 to 13). These results did not change when only studies with explicit admission criteria were pooled (RR = 0.58; 95% CI 0.38 to 0.87, I² = 28%) or when systemic CCS were used (RR = 0.74; 95% CI 0.48 to 1.14).

Spirometric testing

Nine studies examined the response to treatment in children and adolescents with acute asthma using spirometry. Five trials reported the percentage change in FEV₁, three reported the percentage change in PEFR, and one study reported the percentage change in respiratory resistance. One trial tested two protocols (single and multiple fixed dose) and one study presented data stratified by severity of obstruction (moderate and severe). Data were recorded 60–120 minutes after the last combined treatment. When all the studies were pooled a significant improvement in spirometric parameters favoured the combination treatment (SMD = −0.54; 95% CI −0.28 to −0.81, p = 0.0001). However, there was significant heterogeneity (χ² = 23.41, df = 10, I² = 57.3%, p = 0.009). When we pooled the seven studies that reported FEV₁ data (change in percentage predict or percentage change) stratified by the intensity of anticholinergic treatment (one or two doses v more than two doses), homogeneity was achieved (fig 3). The use of more than two doses of anticholinergics showed more benefit than lower doses. There was no evidence of systematic bias. Patients treated with one or two doses of anticholinergic agents had a mean difference of change in FEV₁ of 12.4% (95% CI 5.4 to 19.4) compared with those who did not receive anticholinergics, while those who received more than two doses had a mean difference of 16.3% (95% CI 8.2 to 24.5).

Spirometric data were reported by 16 studies in adult subjects. Two trials showed data stratified by severity of obstruction (moderate and severity). Eight trials reported FEV₁ (l), PEFR (l/min), and one reported PEFR (% predicted). Combined treatment produced a significantly greater increase in spirometric parameters than β₂ agonists alone (SMD = −0.36; 95% CI −0.23 to −0.49, p = 0.00001). There was a significant heterogeneity between trials (χ² = 25.5, df = 15, I² = 41.3%, p = 0.04). Homogeneity was achieved when studies that reported PEFR (l/min) were stratified by intensity of anticholinergic treatment (fig 4). Again, the use of more than two doses of anticholinergics produced a greater benefit than one or two doses and there was no evidence of systematic bias.

Other outcomes

Three paediatric studies reported a significant reduction in the clinical score after combined treatment (SMD = −0.29;

Figure 2 Pooled relative risk for hospital admission (with 95% confidence interval) of eligible studies in adults comparing the addition of anticholinergic agents to β₂ agonists (treatment) with β₂ agonists alone (control). Trials stratified according to intensity of anticholinergic treatment (single or multiple fixed dose protocols) and asthma severity (moderate or severe patients).
95% CI −0.51 to −0.07, p = 0.01). No significant heterogeneity was demonstrated ($\chi^2 = 1.33$, df = 3, p = 0.72, $I^2 = 0\%$). There was no apparent increase in the occurrence of side effects among subjects treated with either single or multiple dose protocols. Thus, there was no significant difference between groups in the five studies in children that reported the presence of tremor (RR = 1.15, 95% CI 0.79 to 1.69, p = 0.46). An identical pattern was seen in three adult studies that reported the same variable (RR = 1.28, 95% CI 0.92–1.78, p = 0.14). Six adult trials that evaluated the effect of treatment on heart rate did not find a difference between groups (WMD = −2.07, 95% CI −4.35 to 0.21, p = 0.07). There was insufficient information to pool outcomes such as oxygen saturation due to the insufficient number of trials reporting this outcome. The analysis of only the trial which tested the administration of multiple inhalations of combined treatment until a satisfactory clinical response was achieved (multiple dose flexible protocol) showed a significant decrease in the clinical score at 30–45 minutes between patients treated with salbutamol and ipratropium and those treated with salbutamol alone.

DISCUSSION

This systematic review constitutes an effort to incorporate the best evidence available up to April 2005 on the role of inhaled anticholinergic agents added to β_2 agonists in children, adolescents, and adults with acute asthma in the ED setting. New data were found which added to previous review. Thus, 10 new randomised trials (four in children) and six in adults with a total of 809 patients have been added, representing an increase of 22% on the previous sample. Unlike the previous reviews, this study has enabled analysis of the effect of cumulative doses, particularly in adult studies. Several important conclusions can be made. Overall, our analysis confirmed that early administration of inhaled anticholinergic agents with β_2 agonists lead to a reduction in admission rates of both children and adults of 30%. Baseline severity and the intensity of the anticholinergic protocol clearly influenced the magnitude of the benefit. Thus, anticholinergic agents are particularly beneficial in patients with moderate to severe obstruction (FEV1 <70% of predicted) treated with multiple dose fixed protocols consisting of three or more doses of an anticholinergic. These patients had a reduction in the hospital admission rate of 30–45% and only 6–14 subjects need to be treated to prevent one hospital admission. This is a very relevant finding since hospital admissions count for the largest part of direct health costs for asthma in most countries, and children or adults with more severe asthma attacks are more prone to be admitted to hospital. However, this review did not identify any beneficial effects of anticholinergic agents in patients with mild acute asthma. The fact that the use of systemic CCS

![Figure 3](https://example.com/image3.png)

Figure 3 Pooled standardised mean difference (95% confidence interval) in forced expiratory volume in the first second (change in percentage predicted or percentage change) of children studies comparing the addition of anticholinergic to β_2 agonists (treatment) with β_2 agonists alone (control). Trials stratified according to the intensity of anticholinergic treatment (one or two doses vs more than two doses).

![Figure 4](https://example.com/image4.png)

Figure 4 Pooled weighted mean difference (95% confidence interval) in peak expiratory flow (l/min) of studies in adults comparing the addition of anticholinergics to β_2 agonists (treatment) with β_2 agonists alone (control). Trials stratified by intensity of anticholinergic treatment (one or two doses vs more than two doses).
has not shown a significant effect in agreement with the evidence that they require 6–12 hours to modify outcomes such as lab tests of antiinflammatory agents in combination with a β2 agonist. In adults, treatment with more than two doses produced clinically significant improvements in both FEV1 (0.44 l) and PEFR (50.5 l/min). 46

In our meta-analysis we also looked at secondary outcomes and side effects but these were difficult to analyse because there was insufficient information to be pooled. A few of the studies in children reported a significant reduction in different clinical scores after combined treatment. There was no apparent increase in the occurrence of side effects such as tremor or heart rate among subjects treated with single or multiple dose protocols.

Strengths and limitations of the study

This study met most of the methodological criteria suggested for scientific reviews. 45 Similar to all systematic reviews, this meta-analysis is limited by the quality and quantity of existing research and how data are reported. A comprehensive search of the published literature for potentially relevant studies was conducted using a systematic strategy to avoid bias. All of the 32 trials were randomised, and 26 were double blind. Exclusion of trials with lower methodological quality did not affect the conclusions. Assessment of the consistency of effects across studies is an essential part of the review to determine the generalisability of the findings; low values of heterogeneity (<15%) were obtained in all group and subgroup comparisons. The generalisability of study results to different countries should also be considered, particularly with regard to the hospital admission criteria. The decision to admit patients is based on many factors including past asthma and current exacerbation histories and spirometric test results, as well as clinical factors. Important variations in admission criteria could therefore influence the results. However, the results did not change when we analysed only studies with explicit criteria for admission to hospital.

Authors’ affiliations

34 Rodrigo G, Rodrigo C. Tratamiento de la crisis asmatica con altas dosis de salbutamol y bromuro de ipratropio administrados mediante inhalador de dosis medida e inhalocamera. Pae Crítica 1995;8:175–84.

LUNG ALERT

Nitric oxide protects against airway hyperresponsiveness

Nitric oxide (NO) is a highly active endogenous bronchodilator and, although increased levels are found in asthmatic lungs, the link between NO and asthma has remained elusive. NO is short lived in vivo but it reacts with cysteine sulphurs (thiols) in proteins to form more stable S-nitrosothiols (SNOs) which act as a source of bioactive NO. S-nitrosoglutathione (GSNO) is the most abundant SNO found in the airways where its levels are governed by the enzyme GSNO reductase (GSNOR). However, GSNO is depleted in asthmatic airways, suggesting a protective role.

In this study the authors showed that GSNOR levels were raised in the lungs of mice exposed to the allergen ovalbumin (OVA), probably due to lysis of airway epithelial cells and leucocytes. SNO levels were depleted. GSNOR gene knockout mice exposed to OVA had raised levels of SNOs in the airway, reduced basal airway tone, and no response to methacholine. Levels of type II inducible NO synthase were similar to wild type mice, as was the inflammatory response measured by bronchoalveolar fluid cell counts and IL-13, serum total IgE, and mucus metaplasia. Tracheal rings from wild type mice became desensitised to repeated β-adrenergic stimulation, whereas GSNOR knockout mice did not and so retained the capacity to relax.

This is the first study to show a definitive link between NO and airway hyperresponsiveness (AHR). NO, when present as SNOs, protects against AHR through modulation of β-adrenoceptor function. SNO levels are regulated by GSNOR which is raised in asthmatic airways, and the resulting lack of SNOs promotes AHR.

P Kewin

Wellcome Clinical Research Fellow, Department of Respiratory Medicine, Gartnavel General Hospital, Glasgow, UK; pk49y@clinmed.gla.ac.uk
the UK may not see a single case of tuberculosis in several years.

Nevertheless, given the consequence of pulmonary tuberculosis to the individual and society, it is appropriate for clinicians and general practitioners to ensure that tuberculosis is among the differential diagnoses in patients with relevant symptoms and signs and to investigate for tuberculosis fairly promptly. Every attempt should be made to obtain a microbiological diagnosis. As Jolobe points out, it is also true that patients with smear-negative culture-positive tuberculosis can transmit infection, although less so than those who have a positive smear from direct sputum examination. Exclusive extrapulmonary tuberculosis is, however, not infectious and the suggestion to the contrary is erroneous.

In view of the current rise in the incidence of tuberculosis, without high case detection and the adequate treatment of cases, tuberculosis may not remain an uncommon illness in the UK. Vigilance for both pulmonary and extrapulmonary tuberculosis is required.

Ibrahim Abubakar, Michelle E Kruijshaar
Tuberculosis Section, Health Protection Agency Centre for Infections, London, UK

Correspondence to Ibrahim Abubakar, Tuberculosis Section, Health Protection Agency, 61 Colindale Avenue, Colindale, London NW9 5EQ, UK; ibrahim.abubakar@hpa.org.uk

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 24 August 2010
Published Online First 1 October 2010

Thorax 2010;65:1117—1118.
doi:10.1136/thx.2010.149708

REFERENCES

CORRECTION

doi:10.1136/thx.2005.040444

had a chest CT scan on referral. They fail, however, to describe a role for chest CT, but do imply that it may be indicated for patients undergoing video-assisted thoracoscopic drainage (VATS). There is no evidence in the current literature supporting the use of CT scans before VATS. The British Thoracic Society guidelines do not recommend routine chest CT scans in children with empyema.

In our centre all patients with empyema requiring intervention undergo VATS (approximately 40/year). We would suggest that chest CT is not indicated before VATS in nearly all cases. We have found chest CT scans to be helpful, however, in situations where the patient has not responded to appropriate treatment with antibiotics and VATS. In this situation the possibilities are reaccumulation of pleural fluid, abscess formation or more extensive parenchymal involvement, differential diagnoses that are distinguished by CT scanning and information that is critical to the decision to reoperate (or not).

In addition, Jaffe et al do not take the opportunity to critically examine the role of chest ultrasonic scans in patients with empyema. In our experience, clinical examination and chest radiography can determine the presence of pleural fluid. If the purpose of the ultrasound scan is to determine whether the fluid is simple (a parapneumonic effusion) or organised (empyema), this can be achieved more simply with a lateral decubitus or erect chest radiograph. The decision to undertake definitive management with urokinase or VATS is determined by the presence of unremitting infection and/or fluid volume in the pleural space. It is an outdated paradigm that the distinction between simple and organised pleural fluid makes any difference to subsequent treatment or outcome. The main use for ultrasound scanning should be for those children who are found to have a unilateral white-out on the chest radiograph at presentation and for whom the distinction between pleural space and parenchymal disease is difficult to make.

J Massie, N Pillarisetti, S Ranganathan
Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, Australia

Correspondence to: Associate Professor J Massie, Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Melbourne 3052, Australia; john.massie@rch.org.au

Competing interests: None.

Accepted 26 June 2008

REFERENCES

Author’s response
We thank Massie et al for correctly questioning the clinical need for routine chest CT scanning before performing video-assisted thoracoscopic surgery (VATS). Our study was pragmatically designed to reflect clinical practice in our institute, where thoracic surgeons routinely request a preoperative CT scan for use as a “road map” when performing minimally invasive endoscopic surgery where direct visual access is limited. This helps to plan and assist in placement of the ports and instruments in order to decrease risk and avoid potential complications such as bronchopleural fistula which would result as a consequence of puncturing the lung parenchyma in close proximity to the pleura. We agree with them that there is no evidence base to support this practice in terms of risk, and our study was not designed to answer this question.

The principle of providing surgical “road maps” (which cross-sectional imaging now provides) is prevalent in many areas of cardiothoracic imaging where CT and MRI are added as an adjunct to echocardiography and ultrasound scans in order to enhance anatomical (and, indeed, sometimes functional) information to enhance quality and provide a safer more informed patient journey.

We are surprised that Massie et al advocate the use of a lateral decubitus chest radiograph in place of an ultrasound scan which is not, in fact, a recommendation of the BTS guidelines. Indeed, this would be a retrograde step in terms of the quality of information and the radiation burden, and should only be advocated where there is no access to ultrasound.

As discussed in our paper, ultrasound is an invaluable tool as it is cheap, mobile, easy to use, can differentiate transonic from purulent fluid, solid lung from fluid and enables the radiologist to mark the spot for chest drain insertion. Although it has been used to stage the disease, we agree that it is not useful in predicting the clinical outcome as was evident in our study. Importantly, ultrasound does not carry a radiation burden.

One of the key messages we had hoped to emphasise in our study is the critical need to reduce exposure of children to unnecessary radiation. With this in mind, we disagree with Massie et al and continue to advocate the use of ultrasound as the most important imaging modality in managing children with empyema. The BTS guidelines also support this view.

A Jaffe, A D Calder, C M Owens, S Stanojevic, S Sonnappa
1 Sydney Children’s Hospital, Randwick and University of New South Wales, Sydney, Australia; 2 Department of Radiology, Great Ormond Street Hospital for Children NHS Trust, London, UK; 3 Portex Anaesthesia, Intensive Therapy and Respiratory Unit, Institute of Child Health, London, UK; 4 Department of Respiratory Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK

Correspondence to: Dr A Jaffe, Department of Respiratory Medicine, Sydney Children’s Hospital, High Street, Randwick, Sydney, NSW 2031, Australia; adam.jaffe@sessihs.health.nsw.gov.au

Competing interests: None.

CORRECTIONS
doi:10.1136/thx.2008.101691corr1

doi:10.1136/thx.2005.047803corr1
G J Rodrigo, J A Castro-Rodriguez. Anticholinergics in the treatment of children and adults with acute asthma: a systematic review with meta-analysis (Thorax 2005;60:740–6). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.047803. We apologise for any inconvenience caused.

doi:10.1136/thx.2005.058156corr1
T Hirano, T Yamagata, M Gohda, et al. Inhibition of reactive nitrogen species production in COPD airways: comparison of inhaled corticosteroid and oral theophylline (Thorax 2006;61:761–6). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.058156. We apologise for any inconvenience caused.

doi:10.1136/thx.2005.057935corr1
J Batra, T P Singh, U Mahalirajan, et al. Association of inducible nitric oxide synthase with asthma severity, total serum immunoglobulin E and blood eosinophil levels (Thorax 2007;62:16–22). This article was originally published with an incorrect digital object identifier (doi). It has been updated with the correct doi: 10.1136/thx.2005.057935. We apologise for any inconvenience caused.