VEGF in idiopathic ILD

Simler et al raise an interesting possibility of the prognostic value of plasma VEGF in interstitial lung disease.1 Meyer et al in a previous study did not find any difference in serum VEGF levels in patients with diffuse parenchymal lung disease. It would have been interesting to know the bronchoalveolar lavage (BAL) fluid levels of VEGF in these patients as Meyer et al and Koyama et al have shown reduced BAL fluid VEGF levels in interstitial lung disease. This might simply reflect damage to the alveolar epithelium (a known major source) in this disease or, indeed, VEGF may have an important role in the pathogenesis of interstitial disease. Interestingly, VEGF receptor blockade has been shown to lead to an induction of apoptosis and an emphysema-like histological appearance in rats but with no evidence of fibrosis or inflammatory cells.2

In addition, it is interesting to speculate on the cellular source of the increased plasma levels of VEGF in the more fibrotic patients. Could the alveolar-capillary membrane damage with leakage of intra-alveolar VEGF which is known to be compartmentalised and hence lower BAL fluid levels as described in the previous studies? Or does it represent an inflammatory cell source of systemic VEGF correlating with an inflammatory response that is here associated with a poorer outcome? Or is there some other mechanism?

Finally, Koyama et al have shown that smokers also have reduced BAL fluid levels of VEGF and this may be of relevance if the increased BAL fluid levels are postulated as having angiogenic potential in alternative areas of the lung. Alternatively, VEGF levels appear to be higher in epithelial fluid than in the serum, suggesting vescicular intraluminal secretion and the existence of a concentration gradient from air spaces to intravascular spaces.3

Thickett et al are correct in their quotation of the normal range for VEGF in plasma (36–76 pg/ml) as measured by the R&D Systems Quantikine ELISA kit. They point out that this range is quoted by the kit manufacturers and is consistent with their own data and, indeed, with other published studies.4,5 We did not use the Quantikine kit in this study but stated clearly that: “The ELISA capture and detection antibodies for assaying IL-8 and VEGF were selected paired reagents optimised for ELISA performance from R&D Systems”. R&D currently sell these paired reagents under the name “Duoset”. Different ELISA formats for VEGF quantitation using recombinant VEGF165 as standard are available. Capture reagent: (1) rabbit polyclonal anti-VEGF (in house); (2) soluble fli-t-1 (Sflt-1); (3) Quantikine kit, mouse anti-VEGF; (4) Duoset, mouse anti-VEGF. Detection reagent: (1) mouse anti-VEGF (Genetech 4.6.1); (2) rabbit anti-VEGF; (3) mouse anti-VEGF; (4) mouse anti-VEGF.

Not surprisingly, each assay reports a different normal range. In our experience the Quantikine kit measures low (with up to a third of samples having undetectable levels) and the Duoset combination measures high, as we reported in the article (648 pg/ml). The other assays report intermediate values.

A number of possibilities exist as to why these assays read differently. It is unlikely to be due to platelet release as suggested. The greatest difference in VEGF levels that is detected between paired serum (complete platelet release of VEGF) and standard plasma samples (low platelet VEGF release) is at most only three to four fold. Similarly, the difference in VEGF between paired platelet poor and platelet rich plasma samples is of the same order of magnitude. To demonstrate this one has to spin plasma samples at 2700g for 15 min to prepare platelet poor samples. In our experience it is important to use plasma rather than serum samples to prevent platelets from clotting. Different plasma samples should be treated each sample similarly in terms of centrifugation—whether at 300g for 12 min, 1000g for 15 min, or 2700g for 15 min. This will minimise variation in the study samples due to the “platelet release effect”. There are possible explanations for the VEGF immunoassays reading differently in plasma. It may be a combination of at least two effects—the nature of the epitope detected and the presence of other competing ligands in the sample. Different antibodies raised to VEGF will react variably with available epitopes on the ligand. This can be quite striking with monoclonal antibodies to different epitopes of a ligand when they are used as ELISA capture reagents. Antibody A reacts with an epitope on VEGF that is close to or part of the fli-t-1 receptor binding site and the other antibody B reacts with an epitope well removed from this site, with an identical absolute amount of VEGF in the plasma sample, antibody A would read low or negative and antibody B would read high in relation to the amount of sflt-1 present in the plasma sample. We have in fact shown that the capture antibody used in the Quantikine VEGF ELISA is, indeed, sensitive to the presence of sflt-1.6

In addition to this potential variation in the level of free VEGF and VEGF-sflt-1 complexes in plasma samples, a further confounding species is the amount of placenta growth factor (PGF). VEGF is a natural homodimer but it does form heterodimers with PGF and we have detected such complexes.7 Antibodies detecting epitopes that are variably modulated by the binding of PGF to VEGF will read low or high depending on the PLGF concentration. This focuses on the nature of the R&D Systems monoclonal antibodies to VEGF—one in the Quantikine kit and the other in the Duoset. Following the recognition of a difference in performance of these two assays, we contacted R&D Systems for information concerning the nature of these antibodies. We were interested to know if the same antibody or different antibodies were used and what information was available on their specificity. The response from R&D Systems was that the capture antibodies were different, so the scenario outlined above is a possible explanation.

It is not surprising that the difficulties in interpreting absolute levels of VEGF in complex media such as plasma. To do this rigorously one ought to quantify not only free VEGF but also VEGF complexes with sflt-1, sKDR, and PGF to understand how these antibody measurements report against another, and currently this is not possible. It would be simplistic to think that the Quantikine kit values are the “true” VEGF values and the Duoset assay values artefactual. It might simply reflect the presence of a capture antibody. Quantikine values are free VEGF and the Duoset values total VEGF (free VEGF plus VEGF complexes).
The important observation in our study is not the absolute VEGF plasma values but the relative differences in VEGF levels between patients and control samples over time, where the sampling issues have been fully appreciated and rigorously controlled to allow clinical interpretation of the results. We have emphasised the prognostic value of plasma VEGF in idiopathic pulmonary fibrosis and have shown a significant positive relationship between the HRCT fibrosis score and the plasma concentration of VEGF. A comparison with acute respiratory distress syndrome (ARDS) is not useful and perpetuates the concept that ARDS equates with chronic idiopathic pulmonary fibrosis, which is not the case.

In relation to the point about quantitating local VEGF concentrations in the lung where the influence of epithelial slit-l1 might be greater, it is to be expected that different assays could lead to a variation in reported VEGF levels for the reasons already discussed.

In conclusion, we have complete confidence in the validity and reproducibility of the VEGF data presented. In a situation of excess VEGF production which could potentially be driving an angiogenic fibrotic pathology in the lung, we suggest it is the VEGF data presented. In a situation of evidence in the validity and reproducibility of local VEGF concentrations in the lung where equates with chronic idiopathic pulmonary disease render the molecule insensitive to MDP 15 (previously called NOB 2) genetic variants, been made in unravelling the genetic basis of susceptibility to Crohn’s disease. Three CARD 15 (previously called NOD2) variants, resulting in proteins with modified carboxy terminal regions, have been implicated. 43% of patients with Crohn’s disease carry at least one of these CARD 15 mutations (compared with 15% of healthy controls). Mutations in CARD 15 have also been identified in affected members of families with Blau syndrome. This is a rare autosomal dominant disorder, sometimes referred to as familial sarcoidosis, characterised by granuloma formation in joints, skin, and uvea.

Card 15 is a microbial sensing protein involved in innate immunity. It recognises conserved structural components of microorganisms (bacterial muramyl dipeptide, MDP and peptidoglycan, PGN) and is part of the danger signal pattern recognition network which forms the front line of protective immunity. Mutations associated with Crohn’s disease render the molecule insensitive to MDP and interfere with the downstream activation of NF-κB. One potential result of this may be the persistence of an antigen resulting in engagement of other arms of the adaptive immune system and formation of granulomas. Expression of CARD 15 in monocytes (precurors of macrophages and granulomas) (further supports an important role in granuloma formation. We hypothesised that mutations in CARD 15 may be a unifying defect in the multisystem granulomatous diseases of Crohn’s disease, sarcoidosis, and Blau syndrome.

To investigate this we recruited a cohort of 29 patients with sarcoidosis from the Oxford Centre for Respiratory Medicine. All had a typical clinical picture of sarcoidosis and either histologically proven disease or characteristic Löfgren’s syndrome (defined as an acute onset of disease with erythema nodosum, joint pains, and bilateral hilar lymphadenopathy). The diagnosis of sarcoidosis was also supported by the characteristic appearance of the lungs on a high resolution computed tomographic (CT) scan in all patients. The definition and diagnosis of sarcoidosis adheres to the statement on sarcoidosis adopted by the joint committees of WASOG/ATS/ERS. The patients were first diagnosed between the ages of 25 and 40 years and had been followed up for at least 1 year before recruitment. All were white and one third presented with Löfgren’s syndrome. Written informed consent was obtained for genetic analysis and the study was approved by the local ethics committee.

The entire coding region of CARD 15 (11 exons and flanking intronic sequences) was screened for the presence of mutations. In brief, the CARD 15 gene was amplified from genomic DNA samples by polymerase chain reaction (PCR) using primers as previously described and sequenced on an ABI 377 automated sequencer using a Dye Terminator Cycle Sequencing Readout kit (Perkin Elmer Applied Biosystems, CA, USA). Sequence data were then aligned using the Sequence Navigator analysis software Version 1.0.1 (Perkin Elmer Applied Biosystems) and compared with the known CARD 15 sequence (EMBL accession number AJ330140).

435 sequence analyses were performed in the 29 patients. We were therefore able to detect new alleles putatively associated with the sarcoidosis phenotype with frequencies as low as 2%. The three mutations associated with Crohn’s disease were specifically examined. The R702W mutation was observed in one patient with sarcoidosis while the G908R and the 1007fs mutations were not found. These results were not different from those reported previously in control populations where the mutations R702W, G908R and the 1007fs were present in 4%, 1%, and 2% of 103 European healthy controls. Further, although we detected no genetic variation in our sarcoidosis patients. No additional mutations were seen within the rest of the coding region of the gene, suggesting that there were no specific alternative CARD 15 mutations associated with sarcoidosis. Schurmann and colleagues recently found no correlation between specific CARD 15 polymorphic alleles and patients with sarcoidosis from families with more than one member afflicted by the disease. This study provides evidence that CARD 15 is not associated with non-familial sarcoidosis (in patients with a white ethnic background) and that there are no mutations in any part of the coding region of the CARD 15 gene that are associated with sarcoidosis.

There is little doubt that there is a genetic predisposition in sarcoidosis, as indicated by the presence of familial clustering, ethnic susceptibility, and recent evidence of an association with HLA-DRB1. Further, there is the suggestion of a susceptibility gene(s) has recurrently pointed to a locus near the HLA DR region on chromosome 6. This and the exclusion of the NOD2 locus has focused attention on abnormalities in antigen presentation and cytokine/chemokine receptors as a potential basis for the aetiology of sarcoidosis.

L-P Ho, A J McMichael
MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK

L-P Ho, R J O Davies
Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford OX3 7JU, UK

K Gaber
Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK

J-P Hugot, F Merlin
Fondation Jean Dausset/CEPH, Paris, France

J-P Hugot
INSERM U458, Hospital Robert Debré, AP–HP, Paris, France

References
disclosed a white blood cell (WBC) count of 7.4×10^3 (/μl) of (neutral polymorphs 60.7%, lymphocytes 13.6%), and the level of carcinoembryonic antigen (CEA) was 1.33 ng/ml (reference value <3 ng/ml). Sputum acid-fast stain and mycobacterial cultures were all negative. Bronchoscopic examination showed no endobronchial abnormality. A chest radiograph taken at admission and a computed tomographic scan showed a patchy consolidation over the left basal lung. Magnetic resonance imaging (MRI) and angiography of the chest showed that an aberrant bronchial artery had arisen from the left side of the thoracic aorta and crossed the territory of the consolidation patch, but the venous drainage could not be visualised clearly (fig 1).

The patient underwent lobectomy of the left lower lobe and the abdominal sternal thoracoscopic surgery (VATS). A 14×10 cm area of consolidation over the left lower lobe was noted and cystic formation and profuse sputum were found within the lesion. The three feeding arteries from the aorta at the level of the 10th thoracic spine were seen. Microscopically, the parenchyma revealed bronchioitis and microabscess formation. Granulomatous inflammation was also present, but no organisms were identified by acid fast and Grocott’s methenamine silver (GMS) stains (fig 2). The biopsy tissue was ground and inoculated onto Lowenstein-Jensen slant (BBL Microbiology Systems, Cockeysville, MD, USA) and cultured at 35°C in a CO_2 incubator. After 19 days of incubation the culture yielded a photochromogen which was later identified as M kansasii using conventional biochemical methods. The patient had an uneventful postoperative course and was discharged soon after operation. No anti-mycobacterial regimen was administered after the diagnosis was made and the patient’s clinical status remained uneventful at the 3 month follow up.

Pulmonary sequestration is a congenital malformation characterised by the presence of lung tissue with normal or absent communication with the bronchial tree and arterial blood supply from the systemic circulation. Despite the high frequency of infection, few data are available regarding specific infecting organisms. Acute infections due to bacteria such as Staphylococcus and Pseudomona aeruginosa have been described, and some chronic infections due to Aspergillus and Nocardia have also been described. Infected pulmonary sequestration due to mycobacteria including M tuberculosis and M avium-intracellular have been reported only rarely. In our case, M kansasii was the first organism thought to be responsible for the infection of pulmonary sequestration in the absence of other pulmonary or extrapulmonary involvement. It is assumed that the organism reaches the sequestration through Kohn’s pore without causing evident disease in the normal lung parenchyma. The combination of isoniazid, rifampin, and ethambutol was recommended for treatment of M kansasii pulmonary disease. However, surgical removal should be advocated in both asymptomatic and symptomatic cases of pulmonary sequestration and the benefit of a period of preoperative antimicrobial treatment in infected pulmonary sequestration has been debated. Our patient simply underwent a surgical resection and did not receive any anti-mycobacterial agents. We have reported the unique occurrence of pulmonary sequestration with M kansasii infection. Surgical resection allows establishment of the exact diagnosis and immediate removal of the infectious focus, thus preventing complications related to the infection or to the malformation itself.

S H Lin
Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei County, Taiwan

L N Lee, Y L Chang, Y C Lee, L W Ding, P R Hsueh
Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan

Correspondence to: Dr P R Hsueh, Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, No 7, Chung-Shan South Road, 100 Taipei, Taiwan; hsporenl@ha.mc.ntu.edu.tw

References

Infected pulmonary sequestration caused by Mycobacterium kansasii

Mycobacterium kansasii is the second most commonly reported nontuberculous mycobacterium associated with lung disease in the United States. Diseases are almost always cavitory, involving the upper lobes with fibrosis and infiltrations. Underlying pulmonary diseases associated with M kansasii infection include pneumoconiosis, chronic obstructive lung disease, AIDS and malignancy. To our knowledge, M kansasii has never been reported in the English literature in the aetiology of infected pulmonary sequestration. We report a case of intralobar sequestration complicated by infection with M kansasii.

A 33 year old man was previously healthy. An abnormal finding on the chest radiograph had been noted at a routine health check 1.5 years earlier. He had no history of medical illness and no risk factors for HIV infection. No symptoms attributed to his respiratory system such as cough, haemoptysis or dyspnoea, were noted. Constitutional symptoms including malaise, fever, night sweats, anorexia, or weight loss were lacking. Physical examination revealed systolic bruit at the left basal lung. There was neither cyanosis nor digital clubbing. Oxygen saturation by pulse oximetry was 99% while breathing room air. Blood laboratory studies

References