Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations

J B McCafferty, T A Bradshaw, S Tate, A P Greening, J A Innes

Background: The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated.

Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions.

Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) μl, 1019 (313) μl, and 1358 (364) μl, respectively (p<0.001) and TEW was 1879 (378) μl, 2986 (496) μl, and 4679 (700) μl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 ± 30.7 μl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 ± 7.6 μl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH.

Conclusion: These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.

Although the major determinant of exhaled water vapour volume is minute ventilation (Vm) and duration of collection, the effect of differences in ventilatory pattern (such as tidal volume (Vt)) has not been quantified. It is also well established that cooler and drier inspired air produces a lower concentration of water vapour in the exhaled breath, yet this has not been quantitatively assessed in the context of EBC collection.

The aim of this study was therefore to determine the effect of ventilatory pattern (Vm and Vt) and inspired air conditions on the volume of condensate collected and the concentration of certain non-volatile solutes (nitrite and protein) and pH in EBC.

METHODS

Collection of EBC

EBC was collected on a commercial breath condenser (EcoScreen, Jaeger, Germany). Samples were collected in interchangeable sampling tubes (one per sample) with subjects breathing (with nose clip) through a non-rebreathing two way valve. All sampling tubes were disinfected for 30 minutes using 1% potassium monopersulphate solution (Virkon, Antec International Ltd, UK), rinsed for 2 hours by flushing with tap water, then rinsed with ultrapure water (ELGA Labwater, UK) and air dried prior to use. Samples were centrifuged (2000 rpm, 2 minutes) before measurement of volume, immediately frozen, and stored refrigerated at −80°C.

pH of EBC

The pH of the EBC was measured immediately after collection (without deaeration) using a calibrated pH meter.
incorporating an ISFET sensor with temperature compensation (model KS723, Camlab, Cambridge, UK) with an accuracy of ±0.1 pH.

EBC nitrate concentration

The nitrate concentration was determined by a colorimetric assay based on the Griess reaction in which triplicates of 100 µl EBC were reacted with 25 µl Griess reagent and measured at absorbance of 570 nm with a microplate reader (MR 710, Dynatec). Assay sensitivity was 0.5 µmol/l. Samples were stored in polypropylene containers and analysed within 4 weeks to minimise contamination and problems of instability.

EBC protein concentration

The protein concentration was measured based on the bicinchoninic acid method using a commercially available protein assay reagent kit (Micro BCA Protein Assay, Pierce, Rockford, IL, USA). Assay sensitivity was 0.5 µg/ml.

Measurement of flow, temperature, and humidity

To control and test for the effects of inspired air temperature and humidity the breath condenser was attached to a custom built device housing temperature, humidity, and flow sensors as shown in fig 1. Subjects breathed through a two way valve with temperature and humidity sensors located on the inspiratory and expiratory sides allowing measurement of the condition of the air inspired and the moisture content of the exhaled breath. Inspired air was supplied in a flow-past configuration from an air conditioning unit providing control over the air temperature and moisture content. Temperature sensors were K-type thermocouples (accuracy ±0.1°C). Humidity sensors were of thermostet polymer capacitance construction (accuracy of ±2%, Model HHi-3602-A, Honeywell, USA). Expiratory flow was measured using an ultrasonic phase shift flow meter (Model FR-413, BRDL, Birmingham, UK). The linearity of the sensor was <2% and the residual error due to temperature variation <1% in the temperature range 0–40°C. Together these measurements make possible calculation of the total quantity of exhaled water (TEW, see below).

Ventilation pattern targeting

Ventilation patterns were set by feeding the expiratory flow signal into a PC with purpose built breath targeting software which generated a visual and auditory target for expiratory flow rate and respiratory rate, respectively. Inspiratory to expiratory ratio was set at unity. Eucapnia was maintained at the higher minute ventilations by measuring end tidal CO2 and adding CO2 in the inspirate as necessary.

Thermocouple and humidity sensor output was conditioned by purpose built multichannel amplifiers. All signals were captured on a 16-channel computerised data acquisition system (Model 1401, CED, Cambridge, UK) which interfaced with software (Spike 2, CED, Cambridge, UK) to allow real time signal display and storage of data to disk.

Effect of additional circuit and instrumentation on EBC collection

To assess any effects from the added dead space associated with the flow meter and other instrumentation, EBC collections were taken at equivalent ventilatory patterns with 10 subjects breathing directly through the standard two way non-rebreathing valve attached to the breath condenser alone and flow measured at the expiratory port of the condenser.

Effect of breathing pattern on EBC collection

To test the effect of Vm, EBC was collected from 10 healthy non-smoking subjects over timed 6 minute intervals at three target Vm values (table 1, protocol 3), each at high and low target Vt. The conditions of the inspired air were measured and maintained at 22°C.

To test the effects of Vt, EBC was collected from 10 healthy non-smoking subjects over timed 6 minute intervals for a fixed target Vm at high and low target Vt patterns at an inspired temperature of 7°C.

Effect of inspirate temperature and humidity

At a fixed ventilatory pattern (Vt 1500 ml, 10 breaths/min). 6 minute collections of EBC were taken with 10 subjects breathing warm room air (20°C) and colder, drier air (9°C) (table 1, protocol 3).

Analysis of data

Total exhaled water (µl) for each 6 minute collection period was calculated as:

$$\text{TEW} = \frac{\rho_r \cdot V_{TW}}{\rho_w}$$

where \(w\) = absolute humidity of exhaled air (g/kg), \(V_t\) = total expired volume (litres ATPS from integrated flow meter signal), \(\rho_r\) = air density (20°C), and \(\rho_w\) = water density (20°C). The absolute humidity of expired air was derived from the mean temperature and moisture sensor signal (measuring relative humidity) which were referred to the physical properties of moist air at atmospheric pressure.

Statistical analysis was performed using SigmaPlot 2001 for Windows version 8.0 and Sigmapstat 2001 for Windows (SPSS Science Inc, USA). Paired t tests were used to compare the EBC data and a value of p<0.05 was considered significant. Two way ANOVA was used for the analysis of Vm data and Friedman’s two way analysis of variance for data which were not normally distributed (Minitab release 14, Statistical Software, Minitab Inc, USA) was used for the relationship between ventilation and EBC protein, nitrite, and pH.

Study approval for tests on human subjects was granted by the Lothian regional ethics committee and consent was obtained from all participating subjects.
RESULTS
Effect of additional circuit and instrumentation on EBC collection
No difference was found in the volume of EBC or the pH, nitrite and protein concentrations when subjects breathed with or without the instrumented tubing section joined to the condenser based on paired \(t \) tests where a \(p \) value of >0.05 was not considered statistically significant (EBC: 1155 µl with and 1029 µl without, mean difference 136 µl (95% CI -14 to 286); pH: 6.3 \(\pm \) 6.4, mean difference 0.1 (95% CI -0.15 to 0.35); nitrite: 4.1 \(\pm \) 4.0, mean difference 0.1 (95% CI -0.72 to 0.92); protein: 8.1 \(\pm \) 5.1, mean difference 3.5 (95% CI -0.3 to 7.3)).

Effect of Vm on TEW
For target Vm values of 7.5, 15 and 22.5 l (all at Vt 1.5 l), subjects achieved mean (SD) values of 8.6 (1.95), 15.1 (2.55), and 22.8 (3.27) l/min, respectively. The effect of Vm on TEW and EBC volumes is shown in fig 2. These data were analysed using two way analysis of variance with repeated measures and Tukey’s method for multiple comparisons, the effect of Vm the volume of TEW was significantly greater than the EBC volume at all repeated measures and Tukey’s method for multiple comparisons, the volume of TEW was significantly more with increased Vm than did the volume of EBC (\(p<0.001 \)). Water vapour availability (TEW) was significantly higher than EBC, giving a condenser efficiency of 40% at Vm 7.5 l/min which decreased to 29% at Vm 22.5 l/min.

Effect of Vt at fixed Vm
For target Vt values of 500 ml and 1500 ml, subjects achieved actual target volumes of 578 (98) ml and 1540 (232) ml. The effect of Vt is shown in fig 3 where lower Vt patterns gave significantly less TEW (per litre respired) than higher Vt (26.6 \(\pm \) 30.7 µl/l, mean difference 4.1 (95% CI 2.6 to 5.6), \(p<0.001 \)). This was also reflected in the volume of EBC collected (4.3 \(\pm \) 7.6 µl/l, mean difference 3.4 (95% CI 2.3 to 4.5), \(p<0.001 \)).

Effect of inspired air conditions
Subjects breathing at equivalent ventilatory patterns but with cooler, drier inspirate were found to yield less water vapour (TEW 33.4 \(\pm \) 35.6 µl/l, mean difference 2.2 µl/l (95% CI 0.2 to 4.2), \(p<0.05 \)) and less breath condensate (EBC 8.6 \(\pm \) 10.1 µl/l, mean difference 1.5 µl/l (95% CI 0.3 to 2.7), \(p<0.05 \)).

Effect of ventilatory pattern on exhaled pH, nitrite and protein
Despite the effects of Vm and Vt on condensate volume (figs 2 and 3), the ventilatory pattern had no significant effect on condensate pH, nitrite and protein concentrations using Friedman’s two way analysis of variance (since data were not normally distributed). Overall mean (SD) concentrations of protein and nitrite in the EBC were 6.0 (3.4) µg/ml and 3.9 (2.2) µM, respectively, and pH was 6.3 (0.3); fig 4.

DISCUSSION
The volumes of both TEW and EBC increased significantly with Vm. The volume of EBC varied between 627 µl and
et al showed no variance with breathing pattern, which suggests isoprostane. pH is influenced by volatile solutes yet still maintained constant the ratio of analyte to water vapour dilution.

For the purpose of comparison, the inspiratory to expiratory (IE) ratio in this study was set at 1:1 with subjects also being required to reproduce a square wave expiratory waveform. It is recognised that the ventilatory pattern is not solely defined by Vm and Vt, but that factors such as IE ratio and the shape of the inspiratory/expiratory flow rate signals may also be important in the context of airway water transport. Mathematical models of this complex process would suggest that a low IE ratio pattern would result in a lower expiratory water vapour concentration than a high IE pattern for the same Vt and Vm. It is also likely that the IE ratio will have an effect on the net flux of aerosolised droplets. Further studies are required to assess the significance of this effect on water vapour and analyte concentrations in EBC collections.

This study has shown that the effect of ventilatory pattern and inspired air conditions on exhaled water vapour and EBC volume to be significant but insufficient to explain the high degree of variability in solute concentrations seen in the studies by Efros et al and others. Likely sources of this variability include variation in aerosolisation, capture of droplets, and assay variability rather than water vapour dilution. Future attention must therefore be directed towards minimising these sources of variability in order to improve the overall sensitivity of this technique.

In conclusion, these results suggest that condensate yield can be significantly augmented by targeting the ventilatory pattern to higher tidal volumes (>1000 ml) and minute ventilations over 15 l/min. Such augmentation will not significantly affect analyte concentrations.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of Dr PA Kew and Mr A Haston, Department of Mechanical Engineering, Heriot-Watt University, Edinburgh for technical assistance with instrumentation, and Ms M Imrie, Respiratory Unit, Western General Hospital for assistance with nitrite and protein assays.

Authors’ affiliations

J B McCafferty, T A Bradshaw, S Tate, A P Greening, J A Innes, Respiratory Unit, Western General Hospital and University of Edinburgh, Edinburgh, UK

Funded by Chest, Heart and Stroke Scotland, UK

REFERENCES

The "hygiene hypothesis" suggests that decreasing exposure to micro-organisms during infancy is responsible for the increasing prevalence of atopy. However, while a decreased risk of atopic disease is associated with various surrogate markers of microbial exposure including early attendance at day care, a greater number of siblings and living on a farm, specific associations between clinical episodes of infection and atopy remain ill defined and the possible mechanisms obscure.

Two recent papers have sought to characterise further the links between infection and atopy. At a population level, Benn and colleagues used a series of four interviews to study 24,341 mother-child pairs from 12 weeks gestation until the child was 18 months old. Relationships between atopic dermatitis and the incidence of clinically apparent infections were investigated. By 6 months of age 54% of children had experienced at least one infectious episode (most commonly a cold) and at the age of 18 months 11% of the children had atopic dermatitis. While inverse correlations between the presence of atopic dermatitis and a greater number of siblings, living on a farm, pet keeping, and early day care were confirmed, the occurrence of a clinically apparent infection did not result in a decreased risk of atopy. Indeed, the risk was slightly increased. Perhaps exposure to environmental organisms in the absence of clinically apparent disease is a more important phenomenon?

At a molecular level, Tulic and co-workers report the results of a study investigating the response of ex vivo nasal mucosal samples to stimulation with allergen in the presence and absence of lipopolysaccharide (LPS). The subjects comprised 22 children and 17 adults, both with and without atopy. LPS, a major component of gram negative bacterial cell walls, interacts with host tissue via the toll-like receptor TLR-4. This provides an important link between the innate and acquired immune responses and may be one way in which exposure to micro-organisms could modulate the subsequent risk of atopy. In the presence of LPS, allergen stimulation of the nasal mucosa from atopic children (but not adults) resulted in a Th1 type response rather than the Th2 phenotype observed with allergen alone. This effect was shown to be mediated via TLR-4, with upregulation of the immunoregulatory cytokine interleukin-10. Since atopy is classically associated with a Th2 type response, the results suggest a mechanism by which exposure to microbial products might protect from atopic disease.

Debate surrounding the "hygiene hypothesis" continues. These two papers, rigorously conducted and using very different approaches, provide interesting insights into the possible underlying mechanisms.