Involvement of vascular endothelial growth factor in exercise induced bronchoconstriction in asthmatic patients

H Kanazawa, K Hirata, J Yoshikawa

Background: There is evidence that the bronchial microcirculation has the potential to contribute to the pathophysiological mechanisms of exercise induced bronchoconstriction (EIB) in asthmatic subjects. Vascular endothelial growth factor (VEGF), which is highly expressed in asthmatic airways, increases vascular permeability. The relationship between VEGF levels in induced sputum and the severity of EIB in asthmatic subjects was studied.

Methods: The concentration of VEGF in induced sputum was examined in 23 asthmatic subjects and 11 normal controls. The asthmatic subjects performed an exercise test and the % maximal fall in forced expiratory volume in 1 second (FEV1) was measured. Beclomethasone dipropionate (BDP) 400 µg twice daily was administered to the asthmatic subjects for 8 weeks and the exercise test and sputum induction were repeated.

Results: The concentration of VEGF in induced sputum was significantly higher in asthmatic subjects than in normal controls. There was a significant correlation between the concentration of VEGF and the % maximal fall in FEV1 (r=0.826, p=0.0001) and between the concentration of VEGF and airway vascular permeability index (r=0.621, p=0.0037). After treatment with inhaled BDP there was a significant decrease in the concentration of VEGF in the asthmatic subjects (before treatment: 7051 (2361) pg/ml, after treatment: 4498 (2135) pg/ml, p<0.0001). The change in the concentration of VEGF was significantly correlated with the change in % maximal fall in FEV1 (r=0.463, p=0.031).

Conclusions: Excessive production of VEGF in asthmatic airways may contribute to the pathogenesis of EIB via increased airway vascular permeability.

Original Article

Exercise induced bronchoconstriction (EIB) is used to describe the increase in airway resistance that follows exercise in asthmatic patients. Two major hypotheses have been put forward to explain the mechanism of EIB. One suggests that evaporative water loss associated with exercise causes a transient increase in osmolarity of the fluid interface of the mucosal surface in the airways, resulting in mast cell degranulation. The second hypothesis proposes that EIB is a mechanical event in which the airways are rapidly rewarmed by reactive hyperaemia of the bronchial circulation with subsequent oedema of the airway wall. However, since mast cell derived mediators such as histamine and leukotrienes may cause airway oedema, it is possible that both of these hypotheses explain EIB in asthmatic subjects. There is no doubt that the bronchial microcirculation has the potential to contribute to the pathophysiological mechanisms of EIB in asthma.

Vascular endothelial growth factor (VEGF) is one of the most potent inducers of endothelial cell growth. It also increases vascular permeability, allowing plasma proteins to leak into the extravascular space leading to mucosal oedema and thereby narrowing of the airway diameter which could amplify the effects of airway smooth muscle contraction. VEGF is widely expressed in many highly vascularised organs including the lung. Hoshino et al recently reported that VEGF positive cells are significantly increased in the airway mucosa of patients with bronchial asthma compared with healthy control subjects. However, there have been no reports of the possible role of VEGF in EIB in asthma. We therefore examined the relationship between VEGF levels in induced sputum and the severity of EIB in patients with asthma.

METHODS

Subjects
Twenty three non-smoking asthmatic patients of mean (SD) age 34.8 (7.8) years, forced expiratory volume in 1 second (FEV1) 90.1 (5.4)% who satisfied the American Thoracic Society criteria for asthma participated in the study. Eleven healthy, life long non-smoking volunteers of mean (SD) age 34.1 (7.7) years, FEV1 106.6 (5.7)% with no history of lung disease formed the control group.

Methacholine inhalation challenge testing was performed in the patients with asthma. All challenge tests were performed at 13.00 hours to eliminate the effect of diurnal variation. Following baseline spirometric tests and inhalation of diluent to establish the stability of FEV1, the subjects were instructed to take slow inspirations in each set of inhalations.

Methacholine inhalation challenge testing was performed in the patients with asthma. All challenge tests were performed at 13.00 hours to eliminate the effect of diurnal variation. Following baseline spirometric tests and inhalation of diluent to establish the stability of FEV1, the subjects were instructed to take slow inspirations in each set of inhalations.

Spirometric tests were performed before inhalation of 200 µg salbutamol via a metered dose inhaler. All subjects were instructed to wash their mouth thoroughly with water. They then inhaled 3% saline at room temperature, nebulised by an ultrasonic nebuliser (NE-U12; Omron Co, Tokyo, Japan) at
Table 1: Clinical characteristics of the study subjects

<table>
<thead>
<tr>
<th></th>
<th>Normal controls</th>
<th>Asthmatic patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/F</td>
<td>11 (6/5)</td>
<td>23 (13/10)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>34.1 (7.7)</td>
<td>34.8 (7.8)</td>
</tr>
<tr>
<td>FEV₁ (% predicted)</td>
<td>106.6 (5.7)</td>
<td>90.1 (5.4)</td>
</tr>
<tr>
<td>PC_{20} methacholine (µg/ml)*</td>
<td>ND</td>
<td>3.34 (0.31)</td>
</tr>
<tr>
<td>4% Maximal fall in FEV₁, after exercise (%)</td>
<td>ND</td>
<td>24.0 (13.3)</td>
</tr>
<tr>
<td>Sputum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Eosinophils (%)</td>
<td>1.0 (0.7)</td>
<td>17.0 (6.9)</td>
</tr>
<tr>
<td>ECP (µg/ml)</td>
<td>113 (66)</td>
<td>705 (288)</td>
</tr>
<tr>
<td>VEGF (µg/ml)</td>
<td>1345 (1304)</td>
<td>705 (2361)</td>
</tr>
</tbody>
</table>

All values are mean (SD). FEV₁=forced expiratory volume in 1 second; PC_{20}=concentration of methacholine provoking a fall in FEV₁ of 20% or more; ND=not determined.

response to exercise challenge was taken to be the percentage fall in FEV₁, after exercise:

\[
\% \text{ fall in FEV₁} = \frac{(\text{FEV₁ (baseline)} - \text{FEV₁ (after exercise)})}{(\text{FEV₁ (baseline)})} \times 100
\]

Figure 1: Correlation between VEGF levels in induced sputum and maximal fall in FEV₁, in asthmatic patients.

Figure 2: Correlation between VEGF levels in induced sputum and airway vascular permeability index in asthmatic patients.

RESULTS

The clinical characteristics of the 23 asthmatic subjects and 11 age matched normal controls are shown in Table 1. The percentage of eosinophils and the concentration of ECP in induced sputum were significantly higher in asthmatic subjects than in normal controls. The concentration of VEGF in induced sputum was also significantly higher in patients with asthma than in normal controls. There was a significant correlation between the concentration of VEGF and the % maximal fall in FEV₁ (\(r=0.826\), \(p=0.0001\); fig 1) and between the concentration of VEGF and the airway vascular permeability index (\(r=0.621\), \(p=0.0037\); fig 2).

After treatment with inhaled BDP there was a significant decrease in the percentage of eosinophils (from 17.0 (6.9)% before treatment to 8.1 (1.1)% after treatment; \(p<0.0001\)), the concentration of ECP (from 705 (288) ng/ml to 117 (100) ng/ml; \(p<0.0001\)), and in VEGF (from 7051 (2361) pg/ml to 4498...
(2135) pg/ml; p<0.0001) in patients with asthma. The severity of EIB was also significantly decreased after treatment with inhaled BDP (% maximal fall in FEV1 24.0 (13.3)% before treatment r 14.7 (9.4)% after treatment, p<0.0001). The change in the concentration of VEGF was significantly correlated with the change in the % maximal fall in FEV1 (r=0.463, p=0.031; fig 3). In contrast, neither the change in percentage of eosinophils nor the concentration of ECP was significantly correlated with the change in the % maximal fall in FEV1.

DISCUSSION

Higher levels of VEGF were found in induced sputum from asthmatic patients than from normal controls. Moreover, there was a significant correlation between the concentration of VEGF and the severity of EIB. After treatment with inhaled BDP the concentration of VEGF was significantly decreased, and the change in VEGF levels was correlated with the change in the severity of EIB. These findings suggest a role for increased production of VEGF in asthmatic airways in the pathogenesis of EIB.

Bronchial asthma is a chronic airway inflammatory disease associated with airway wall remodelling which includes the growth and proliferation of new blood vessels. It was recently reported that both the number and percentage of vessels in biopsy specimens taken from asthmatic patients were increased compared with normal controls. Moreover, it has been recognised that airway mucosa is oedematous and contains dilated and congested blood vessels even in mild asthma. VEGF is known as a vascular permeability factor. It was previously reported that VEGF induced fenestration in endothelial cells in both in vitro and in vivo models. We have clearly shown that VEGF induces increased vascular permeability in asthmatic airways, which may cause leakage of the mucosal and submucosal capillary beds and induce airway wall thickness. We found that VEGF levels in induced sputum was significantly decreased after treatment with inhaled BDP. This is supported by a previous report which showed that the transcription of VEGF mRNA and the secretion of VEGF protein were downregulated in the presence of corticosteroids. Interestingly, although eosinophilic airway inflammation was completely inhibited by inhaled BDP in the patients with asthma, the concentration of VEGF was still higher in the asthmatic subjects than in controls and the asthmatic subjects subsequently exhibited EIB.

The importance of the vasculature in EIB has previously been suggested. In asthmatic subjects the bronchial capillary bed is hypertrophied and hyperplastic. Because of its location and its ability to alter its size in the asthmatic state, the bronchial circulation could exert an important influence on airway geometry—vascular engorgement, capillary leakage, and oedema formation could induce airway narrowing. Many of the inflammatory mediators thought to cause constriction of bronchial smooth muscle can also cause dilatation and leakage of the mucosal and submucosal capillary beds and induce thickening of the airway wall. A previous study suggested that small increases in wall thickness induced by airway inflammation could produce striking changes in airway responsiveness to various stimuli such as exercise, even with a very small increase in resting airway muscle tone. Thus, mucosal oedema may have a profound effect on airway function and might explain the heightened reactivity characteristic of bronchial asthma. Capillary leakage and airway mucosal oedema formation induced by VEGF may therefore contribute to the airway narrowing after exercise. Yong et al recently reported that VEGF levels in sputum are significantly increased even in patients with stable asthma and are higher in an acute asthmatic attack. However, Demoly et al found no significant difference in VEGF levels in bronchoalveolar lavage (BAL) fluid in asthmatic subjects and normal controls and reported that VEGF levels in asthmatic airways did not correlate with plasma extravasation. This discrepancy may be explained by the use of different biological samples or different asthma states. The dilution in BAL fluid might have resulted in very low VEGF levels which would make it difficult to detect a significant difference between asthmatic subjects and normal controls. Nitric oxide (NO) is a potent vasodilator in the bronchial circulation and increases airway vascular leakage, leading to airway wall oedema. Scollo et al reported that NO levels were correlated with the magnitude of bronchoconstriction induced by exercise challenge. In our earlier study we suggested that NO is associated with EIB and contributes to the prolonged airway narrowing phase evoked by exercise.

In conclusion, our findings suggest that excessive production of VEGF in asthmatic airways contributes to the pathogenesis of EIB via increased airway vascular permeability. It is important to measure the concentration of VEGF in induced sputum when predicting the severity of EIB in patients with asthma. The role of VEGF in modulating EIB warrants serious consideration.

ACKNOWLEDGEMENT

This work was supported by grant-in-aid for Scientific Research (1360611) from the Ministry of Education, Science and Culture, Japan.

Authors’ affiliations
H Kanazawa, K Hirota, J Yoshikawa, Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abenoku, Osaka, 545–8585, Japan

REFERENCES