Influence of age and disease severity on high resolution CT lung densitometry in asthma

F Mitsunobu, T Mifune, K Ashida, Y Hosaki, H Tsugeno, M Okamoto, S Harada, S Takata, Y Tanizaki

Abstract

Background—Low attenuation areas (LAA) on computed tomographic (CT) scans have been shown to represent emphysematous changes in patients with chronic obstructive pulmonary disease (COPD). However, the significance of LAA is still controversial in patients with asthma. This study was undertaken to assess the usefulness of lung CT densitometry in the detection of airspace enlargement in association with asthma severity.

Methods—Forty five asthmatic subjects and 15 non-smoking controls were studied to determine the influence of age, pulmonary function, and asthma severity on mean lung density (MLD) and the relative area of the lung showing attenuation values less than –950 HU (RA950) on high resolution CT (HRCT) scans.

Results—In asthmatic patients both MLD and RA950 correlated with parameters of airflow limitation (%FEV1, FEV1/FVC, %FEF25–75) and lung volume (%TLC, %FRC, %RV), but not with lung transfer factor (%TLCO, %TLCO/VA). The results of HRCT lung densitometry also correlated with patient age and severity of asthma.

Conclusions—Decreased CT lung density in non-smoking asthmatics is related to airflow limitation, hyperinflation and aging, but not with lung transfer factor.

Keywords: high resolution computed tomography; asthma severity; lung function; age

Asthma is a disease characterised by airflow limitation that reverses spontaneously or in response to treatment. The nature of asthma as a chronic inflammatory disease of the airways is well recognised. This inflammation process leads to irreversible changes in the airway. Frequent airway and lung parenchymal changes associated with asthma are considered to be responsible for the irreversibility of airway obstruction, an outcome that is observed in many severe asthmatics. Emphysema, on the other hand, is defined pathologically as a process that results in the increase of airspace without obvious fibrosis. The evidence for the presence of emphysema in asthmatic patients is controversial.

Numerous studies have demonstrated the usefulness of computed tomographic (CT) scanning and high resolution CT (HRCT) scanning to detect and quantify pulmonary emphysema in patients with chronic obstructive pulmonary disease (COPD). In asthmatic patients and correlates with pulmonary function. Genova et al showed that acute expiratory airflow limitation and chronic hyperinflation did not influence the MLD or the relative area of the lungs showing attenuation values less than –950 HU (RA950) in non-smoking asthmatic patients. They also found that CT lung densitometry was influenced by the total lung capacity (TLC) and age in healthy subjects. Biernacki et al observed that some patients with chronic stable asthma develop a reduction in CT lung density. In a previous study we reported that the MLD and RA950 correlated significantly with the forced expiratory volume in 1 second (FEV1), but not with the transfer factor for carbon monoxide (TLCO) in 10 non-smoking asthmatic subjects. However, to our knowledge, the relationship between the findings of CT lung densitometry and asthma severity has not been studied.

The purpose of this study was to evaluate the use of HRCT lung densitometry in detecting distal airspace enlargement in asthma. We investigated the influence of age, pulmonary function tests, and asthma severity on the results of HRCT lung densitometry. We examined MLD and RA950 by HRCT scanning and correlated the findings with lung function in 45 asthmatics and 15 healthy non-smoking controls.

Methods

SUBJECTS

Forty five asthmatic subjects (27 women) of mean (SD) age 60.0 (12.1) years (range 24–80) and 15 normal subjects (10 women) of mean (SD) age 64.2 (10.4) years (range 44–79) were recruited from Misasa Medical Branch. Asthma was diagnosed according to...
Mitsunobu, Mifune, Ashida, et al.

PULMONARY FUNCTION TESTS

Spirometric tests were performed using a Chestac 33 (Chest Co, Tokyo, Japan). The following measurements were performed on all subjects: forced vital capacity (FVC), FEV1, FEV1/FVC, and mean forced expiratory flow (FEF25–75). Total lung capacity (TLC), functional residual capacity (FRC), residual volume (RV), and RV/TLC were measured using body plethysmography (Autobox 2800, Chest Co, Tokyo, Japan). The carbon monoxide transfer factor (TLCO) and TLCO/VA measurements for each patient were expressed as a percentage of their predicted values according to the prediction equations of the Japanese Society of Chest Diseases.

COMPUTED TOMOGRAPHY

Each patient underwent a non-contrast HRCT scan using a Toshiba Xpeed scanner (Toshiba, Tokyo, Japan) with 2 mm collimation, scanning time of 2.7 seconds, voltage of 120 kVp, and current of 200 mA. All HRCT scans were performed in supine patients following maximal inspiration. The images were reconstructed on a 30 cm field of view (FOV) using a standard algorithm (FC 1). Three HRCT scans were performed for determination of MLD and LAA; an upper section was obtained at the top of the aortic arch, a middle section was taken at the top of the lower lobe bronchus, and a lower section was obtained at the top of the diaphragm, as described by Miniati et al.

A preliminary study revealed that the density of the lung area was less than –750 HU whereas the density of the chest wall and mediastinum was greater than –750 HU. Using these results, the areas with a density less than –750 HU were outlined and the areas with attenuation values less than –950 HU were added with white highlighting of areas with average values less than –950 HU.
Effect of age and asthma severity on CT measurements

Table 1 Clinical characteristics and pulmonary function tests of study subjects

<table>
<thead>
<tr>
<th></th>
<th>Controls (n=15)</th>
<th>Mild asthma (n=15)</th>
<th>Moderate asthma (n=15)</th>
<th>Severe asthma (n=15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (F/M)</td>
<td>10/5</td>
<td>10/5</td>
<td>9/6</td>
<td>8/7</td>
</tr>
<tr>
<td>Age (years)*</td>
<td>64.2 (10.4)</td>
<td>57.2 (13.0)</td>
<td>58.2 (13.3)</td>
<td>66.3 (7.8)</td>
</tr>
<tr>
<td>Duration of asthma (years)†</td>
<td>NA</td>
<td>8.0 (3–22)</td>
<td>10.0 (4–25)</td>
<td>15.5 (5–36)</td>
</tr>
<tr>
<td>Atopic/non-atopic</td>
<td>0/15</td>
<td>8/7</td>
<td>8/7</td>
<td>8/7</td>
</tr>
<tr>
<td>FVC (% pred)*</td>
<td>111.5 (8.3)</td>
<td>106.2 (13.7)</td>
<td>102.5 (19.3)</td>
<td>94.6 (12.6)</td>
</tr>
<tr>
<td>FEV1 (% pred)**</td>
<td>107.8 (11.4)</td>
<td>98.6 (10.2)</td>
<td>71.3 (9.9)</td>
<td>52.6 (8.2)</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>79.5 (4.2)</td>
<td>76.0 (9.4)</td>
<td>61.5 (7.5)</td>
<td>52.4 (8.5)</td>
</tr>
<tr>
<td>TLC (% pred)*</td>
<td>103.8 (6.1)</td>
<td>108.3 (9.9)</td>
<td>112.2 (15.0)</td>
<td>117.5 (13.9)</td>
</tr>
<tr>
<td>FRC (% pred)**</td>
<td>97.0 (11.3)</td>
<td>96.6 (14.9)</td>
<td>101.5 (20.1)</td>
<td>107.9 (18.2)</td>
</tr>
<tr>
<td>RV (% pred)**</td>
<td>100.7 (11.6)</td>
<td>108.0 (16.1)</td>
<td>121.7 (34.7)</td>
<td>143.8 (23.9)</td>
</tr>
<tr>
<td>TLCO (% pred)*</td>
<td>102.4 (8.2)</td>
<td>101.8 (12.7)</td>
<td>102.6 (12.6)</td>
<td>105.1 (13.4)</td>
</tr>
<tr>
<td>TLCO/VA (% pred)*</td>
<td>105.5 (6.0)</td>
<td>108.6 (15.8)</td>
<td>111.6 (16.2)</td>
<td>113.1 (13.7)</td>
</tr>
<tr>
<td>Medication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhaled BDP (mg/day)*</td>
<td>NA</td>
<td>706 (103)</td>
<td>1120 (101)</td>
<td></td>
</tr>
<tr>
<td>Systemic corticosteroids (n)</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

FVC = forced vital capacity; % pred = percentage of the predicted value; FEV1 = forced expiratory volume in 1 second; TLC = total lung capacity; FRC = forced residual capacity; RV = residual volume; TLCO = lung transfer factor for carbon monoxide; VA = alveolar volume; BDP = beclomethasone dipropionate; NA = not available.

*Values are expressed as mean (SD).
†Values are expressed as median (range).
‡Patients with severe asthma were significantly higher than those with either moderate (p<0.001) or severe (p<0.001) asthma, and those with moderate asthma were significantly higher than severe asthmas (p<0.001).
§Controls and patients with mild asthma were significantly higher than those with either moderate (p<0.001) or severe (p<0.001) asthma, and those with moderate asthma were significantly higher than severe asthmas (p<0.001).
¶Values are expressed as mean (SD).

Results

Patient Characteristics

Patient characteristics, lung function tests, and current medications are shown in table 1. There were no statistically significant differences in age or sex distribution between patients with mild, moderate, or severe asthma and control subjects. The duration of asthma and the prevalence of atopy did not differ between the three asthmatic subgroups. There were no statistically significant differences in %FEV1, %FEV1/FVC, %TLC, %FRC, %RV, %TLCO, or %TLCO/VA between the groups. All asthmatic patients were treated with inhaled β2 agonists. The mean dose of inhaled BDP was 706 µg/day for patients with moderate asthma and 1120 µg/day for those with severe asthma. The mean dose of oral prednisolone, used only in patients with severe asthma, was 6.8 mg/day. Oral theophylline was administered to patients with moderate and severe asthma.

Relationship between HRCT lung densitometry and physiological factors

The relationship between MLD and RA and age and pulmonary function tests in the 45 asthmatic patients examined are shown in table 2. MLD correlated significantly with patient age, %FEV1, FEV1/FVC, %FEF25–75, %TLC, %FRC, and %RV but not with %FVC, RV/TLC, %TLCO, or %TLCO/VA. We also found that RA correlated significantly with patient age, %FEV1, FEV1/FVC, %FEF25–75, %TLC, %FRC, %RV, and RV/TLC but not with %FVC, %TLCO, or %TLCO/VA. However, there was no statistically significant correlation between HRCT findings and %FEV1, FEV1/FVC, or %FEF25–75 in the 15 healthy controls (data not shown). These data suggest that

HRCT = high resolution computed tomography; MLD = mean lung density; HU = Hounsfield units; RA = relative area of the lung with attenuation values lower than −950 HU; FEF25–75 = mean forced expiratory flow during the middle half of the FVC; NS = not significant. Other abbreviations as in footnote to table 1.

www.thoraxjnl.com
HRCT lung densitometry in asthmatic subjects has significant correlations with patient age and pulmonary function parameters regarding flow limitation and lung volume, but do not correlate with lung transfer factor.

MULTIPLE REGRESSION ANALYSIS

The results of stepwise multiple regression analysis using MLD and RA950 as dependent variables are shown in table 3. The MLD was predicted by the combination of patient age (p=0.0279), %FEV1 (p<0.0001), and %TLC (p=0.0207). The RA950 was also predicted by the combination of patient age (p=0.0411), %FEV1 (p<0.0001), and %FRC (p=0.0112).

RELATIONSHIP BETWEEN HRCT LUNG DENSITOMETRY AND ASTHMA SEVERITY

The MLD values for control subjects and patients with mild, moderate, and severe asthma were –867.3 (20.7) HU, –874.8 (17.2) HU, –893.8 (8.1) HU, and –910.5 (11.5) HU. The RA950 was also predicted by the combination of patient age (p=0.0411), %FEV1 (p<0.0001), and %FRC (p=0.0112).

Discussion

We have examined the relationship between the results of HRCT lung densitometry (MLD and RA950) at maximal inspiration and pulmonary function, patient age, and asthma severity. Our study showed that at least some patients with asthma have decreased attenuation of HRCT lung density which was influenced by age, lung volumes, airflow limitation, and asthma severity, but not by lung transfer factor.

Increases in the LAA of patients with COPD have been reported to reflect the pathological changes of pulmonary emphysema.7–12 The CT measurement of LAA correlates well with transfer factor, a sensitive index of pulmonary emphysema, and measurements of airway obstruction.10–19 29 On the other hand, MLD may be linearly related to the fraction of air in the lungs and therefore may not represent the pathological changes of emphysema, given its non-homogenous distribution. Heremans et al found that, in patients with COPD, MLD correlates with pulmonary function indices of airway obstruction and hyperinflation but not with indices that are considered more specific for emphysema (TLCO and static lung compliance).20 It is likely that the relationship between
MLD and lung function differs from that between RA_{950} and lung function.

In efforts to minimise radiation exposure we calculated both MLD and RA_{950} using three
cross sections of the lung (upper, middle, and lower). This was considered adequate as
Mishima et al described an accurate correlation between the percentage of LAA detected from
10 sections (from apex to base of the lung) versus three sections in patients with COPD.19

We used –950 HU as the cut off level between the normal lung density area and
LAA. Previous studies have used variable levels ranging from –900 to –960 HU.8–11 13 14 17–19 29 30
This discrepancy may be attributed to variations between the CT scanning techniques
(equipment and reconstruction of images) as well as CT images (conventional vs high resolution).

Using HRCT scans of 15 healthy controls, we found the mean MLD –1SD to be
–949 HU.

We obtained images after deep inspiration. Gevenois et al reported that inspiratory CT
images were more accurate than expiratory images for quantifying pulmonary emphysema.11 They speculated that abnormalities in the expiratory CT scan are more reflective of
air trapping than of a reduction in terminal air-space volume. Eda et al found that helical CT
images acquired at maximal expiration reflected air trapping whereas CT visual scores at
full inspiration showed significant correlation with emphysema. We therefore consider inspiratory CT scans to be more suitable than expiratory CT scans for determining whether emphysema is present in asthma.

We found that both RA_{950} and MLD strongly correlated with measurements of airflow limitation (%FEV_{1}, FEV_{1}/FVC) and also significantly correlated with indices indicating hyperinflation (%TLC) and air trapping (%RV). RA_{950} and MLD did not correlate with TLC or TLCO/VA, two values which have been shown previously to correlate with emphysema.14 16 32–34

We also found no statistically significant difference in CT lung densitometry between patients with mild asthma and non-atopic controls. However, RA_{950} increased and MLD decreased significantly with the severity of asthma.

Biernacki et al observed that patients with chronic stable asthma and COPD had a reduction in CT lung density, similar to our results.23 However, they also found that the lowest fifth percentile CT numbers were similar before and after treatment with beclomethasone dipropionate, and at the end of an exacerbation and 6 weeks later in five patients with asthma. They concluded that less restricted airflow and diminished chronic overinflation did not affect the lowest fifth percentile CT number. Gevenois et al failed to find any significant changes in RA_{950} during allergic challenge tests despite a decrease in FEV_{1} and an increase in RV and FRC.22 The MLD and RA_{950} of 10 asthmatics with an increased TLC did not significantly differ from those of healthy subjects. They concluded that hyperinflation and airflow obstruction without emphysematous lung destruction does not influence densitometric measurements obtained from inspiratory scans. The difference between the findings of their study and ours may be due to the fact that our subjects are older than theirs.

By multiple regression analysis we have shown that RA_{950} correlates with age, %FRC, and %FEV_{1}, and that MLD correlates with age, %TLC, and %FEV_{1}. Both MLD and RA_{950} were found to be influenced by age, lung volume, and chronic airflow limitation. Gevenois et al reported that both MLD and RA_{950} are influenced by TLC and, to a lesser extent, by age in healthy subjects.23 This was further supported by a longitudinal study by Soejima et al who showed that age increased airspace abnormalities on HRCT images of non-smoking subjects over a study period of 5 years.35

We found a strong correlation between lung CT density and airflow limitation, a weak correlation with age and lung volumes, and no correlation with transfer factor. The likely reason is that airflow measurements have a wide range whereas age and lung volume measurements have a narrow range. We also speculate that the decreased lung density in non-smoking asthmatic subjects is related to simple gas trapping rather than a significant change in the recoil properties. Further study is needed to examine whether there are significant changes in the recoil properties of asthmatic lungs.

Paganin et al reported a significant increase in the extent of permanent HRCT scan abnormalities with increasing severity and duration of symptoms, both in patients with allergic and non-allergic asthma.36 They further reported that airway remodelling is more common in patients with non-allergic than allergic asthma, even when the duration of disease was similar. They speculated that the anatomical changes in patients with non-allergic asthma were related to advanced age and mechanism of factor. We observed that RA_{950} and MLD values were associated with severity of asthma but not with the type of asthma. Our findings may be explained by the fact that our subjects are too advanced in age to show differences between the two groups. Further study is needed to clarify the relationship between asthma type and the results of CT lung densitometry in younger subjects.

We conclude that decreased HRCT lung density in non-smoking asthmatic patients is related to airflow limitation, hyperinflation and aging, but not to lung transfer factor. The decreased HRCT lung density may represent microscopic emphysema or chronic overinflation. We suggest that HRCT scanning may provide useful information about the severity of chronic asthma.

The authors thank Mr M Nakai for his technical assistance with CT scanning.

No funding in the form of grants, gifts, equipment, or pharmaceutical products was received for this study.

1 Fletcher CM, Pride NB. Definition of emphysema, chronic bronchitis, asthma and airway obstruction. 25 years from CIBA symposium. Thorax 1964;39:91–5.
conditions of high resolution CT in the follow-up of emphysema. Comparison of computed tomography and pulmonary function tests.

BMD and airways disease

The papers recently published in Thorax by Tattersfield et al. and Walsh et al. offer important information about the possible adverse affects of corticosteroids on bone mineral density (BMD). Tattersfield and her colleagues reported no change in BMD with inhaled corticosteroids for mild asthma, while Walsh et al. found a dose related increase in the incidence of fractures in those taking oral corticosteroids. We would like to report our study of BMD in patients with airways disease, which reinforces these findings and highlights men as being particularly at risk.

We prospectively studied 100 consecutive outpatients (44 men) with steroid responsive airways disease. The formulation and cumulative dose of corticosteroid was recorded in each individual, together with all prescribed prophylaxis for 1 year. Thorax 2001; 56: 272–8.

Unfortunately it appears to have been assumed that men are protected from osteoporosis by virtue of their gender. When chronic disease is treated with oral corticosteroids, both men and women are equally at risk of osteoporosis and all should be considered for prophylaxis.

C Elmer, P Bartholomew, A Lapsworth, P Turner, C Kelly
Department of Medicine, Queen Elizabeth Hospital, Gateshead NE9 6SX, UK

References

AHR in asthma

Peat et al. have contributed a helpful review to the debate on techniques for measuring asthma in population studies. However, they have endorsed abnormal responsiveness (AHR) while nearly sidestepping the issue of what test they are discussing. Inhaled provocation tests used in epidemiological work have included histamine, methacholine, hypertonic saline, cold air, and adenosine. Exercise provocation tests have also been used. Peat et al. have previously shown that exercise and histamine challenges may define different groups of patients, and we have shown that longer term repeatability of a free running exercise provocation test is poor within a childhood population. At odds quite considerable within subject variability in PD20 to methacholine has been observed during a 1 year period. A childhood population study found that methacholine PD20 varied by >4 doubling doses within the course of a year in 33% of the subjects. We would suggest that more care should be taken to define the precise measure of AHR used before comments can be made about its sensitivity and specificity in an epidemiological survey. The medium term temporal variation in AHR could be one reason that a number of researchers are another measure which may make it difficult to make useful comparisons between populations.

P A Primhak
Sheffield Children’s Hospital, Western Bank, Sheffield S10 2TH, UK
C V E Powell
Departments of Emergency Medicine and General Paediatrics, Royal Children’s Hospital, Parkville, Victoria 3052 and University of Melbourne, Victoria, Australia

References

Authors’ reply

Primhak and Powell make the valid point that the presence of airway hyperresponsiveness (AHR) is not an absolute attribute. Abnormal AHR represents one end of a continuum of responsiveness. Furthermore, the distribution of that continuum varies according to the nature of the direct or indirect stimulus that is applied.

In our studies, referred to in the review, we have defined abnormal airway responsiveness as a decline of more than 20% in forced expiratory volume in 1 second (FEV1) after inhalation of a cumulative dose of histamine of ≤3.9 μmol. Using this criterion, the presence of AHR is a useful marker of airway abnormality consistent with asthma in epidemiological studies and is also predictive of the subsequent course of the disease.

We acknowledge that other criteria for the presence of AHR have not been evaluated as extensively in epidemiological studies. However, there is evidence that at least some indirect agonists, such as non-isotonic aerosols and exercise, also have a high level of specificity but only moderate sensitivity as markers of asthma symptoms.

J K Peat, B G Toelle, G B Marks, C M Mellis
Institute of Respiratory Medicine, University of Sydney, Box M77, Missenden Road P.O., Camperdown, NSW 2050, Australia

References

One fibre or many; what causes mesothelioma?

In a recent case (00/TLQ/1284) in the Queen’s Bench Division of the High Court in England, a widow sued on behalf of her husband who had died at the age of 60 of mesothelioma. Unusually for such cases, Mr Justice Curtis found for the defendants, and the grounds for his judgment were sufficiently curious to be of general interest and worthy of debate.

It was not disputed that the deceased had been exposed to substantial quantities of asbestos during two periods of employment, nor that there had been a breach of statutory duty by his employers at that time. The judgment was based, however, on the expert and agreed opinion of “two most highly qualified medical men”. In their joint report and oral evidence, the judge believed these doctors to have stated that mesothelioma is the consequence of malignant transformation in a single cell, the result of a hit by either one or several fibres. This led the judge to reason that, although a fibre or fibres inhaling during one...
or other period of employment may well have led to the fatal cellular transformation, it was not possible to say which, and he was therefore unable to find either responsible.

In coming to his judgement, Mr Justice Curtis made a distinction between causation and risk factors. In his words “the only relevance of the number of fibres is in connection with the risk of contracting the disease”. He was thus dissuaded from being influenced by any evidence that might have shown a relationship between risk of mesothelioma and dose of asbestos, although there is much such evidence from studies both of human lungs and of animals.

He held the view expressed before that one fibre causes mesothelioma. It depends what you mean by “cause”; it is in one sense obvious nonsense. We all have millions of asbestos fibres in our lungs and the likelihood one fibre causes mesothelioma. It depends on the human lungs and of animals.

The moral of this story is that lawyers are clever people and part of their business is the meaning of words. The word “cause” is one that requires a bit of thought. My Shorter Oxford Dictionary devotes a column to it.

A Seaton
Department of Environmental and Occupational Medicine, Aberdeen University Medical School, Foresterhill, Aberdeen AB25 2ZP, UK; a.seaton@adm.ac.uk

Mesothelioma
We write as the three medical witnesses who provided evidence (all in writing, two orally) to the Court in the case referred to by Professor Seaton. Essentially we agree with his analysis. The medical evidence presented to the Court made it clear that the risk of mesothelioma increases in relation to the dose of asbestos and that it is not possible to identify the particular fibre or fibres involved in the genesis of a particular mesothelioma. From an epidemiological standpoint it is therefore appropriate to regard all sources of significant exposure as having contributed to causation of the disease, in the same way that all cigarettes smoked would be considered to have contributed to causation of a lung cancer.

Mr Justice Curtis, however, accepted the invitation of Leading Counsel for one of the defendants to adopt a strictly mechanistic approach to causation. He decided that, because the claimant could not show whether the fibre or fibres actually involved in the genesis of the tumour were derived from either or both of two sources of exposure, causation could not be established against either of two of the defendants.

More recently, a different view has been taken in a similar case by Mr Justice Mitting (Queen’s Bench Division C20010111). He considered that there was “no substantial difference between saying that what the defendant did materially increased the risk of injury to the claimant and saying that what the defendant did made a material contribution to his injury”. It would be “wholly artificial to require a claimant to prove which fibre or fibres, inhaled in whose employment in precisely what circumstances, caused or set off or contributed to the process by which one or more mesothelial cells become malignant”. He concluded that breach of duty on the part of both defendants caused the mesothelioma.

Both cases are soon to be considered by the Court of Appeal and the outcome will determine which of the three medical witnesses is correct. Essentially we agree with the analysis of Professor Seaton. Essentially we agree with his. My Shorter Oxford Dictionary devotes a column to it.

M Robinson
Mesothelioma Information Service, Cookridge Hospital, Leeds LS16 6QB, UK; mavisro@ulth.northy.nhs.uk

J Wiggins
Department of General Medicine, Westminster Hospital, Slough, Berkshire SL2 4HL, UK

Reference

Asymptomatic pulmonary involvement in RA
Dawson et al found HRCT evidence of fibrosis in 19% of 150 patients with rheumatoid arthritis (RA). The presence of FA did not relate to previously described predisposing factors such as male sex, nodular and/or extra-articular disease, disease duration and severity. Moreover, the authors did not find any relation with respiratory symptoms such as dyspnoea or cough, chest radiographic appearance of FA, or restrictive pattern at pulmonary function tests. The only factors significantly associated with FA on the HRCT scan were the presence of bivalar crackles and the reduction in carbon monoxide transfer factor (Tlc). These findings are more difficult to explain, especially considering that FA was defined as an HRCT pattern.
“typical” of usual interstitial pneumonia according to a more recent classification. Other studies had shown a high prevalence of FA, even in recent onset RA.

We have recently investigated the presence of pulmonary disease in 24 consecutive patients with RA without respiratory symptoms or signs and a normal chest radiograph. In all these patients we performed a chest HRCT scan as well as complete pulmonary function tests (PFTs). Our patients were predominantly women (22/24), of mean age 49.4 years (range 26–72), and 46% of them had a disease duration of less than 2 years. Only 33.3% were current smokers. We found TLCO of <75% in 26–72), and 46% of them had a disease duration of less than 2 years. Only 33.3% were current smokers. We found TLCO of <75% in 50% of the patients; two patients had obstructive PFT and one patient restrictive PFT. Pleuropulmonary alterations were detected in 20.8% of the patients on the HRCT scan, but only one patient had an HRCT pattern suggestive of FA according to stringent criteria. In all the other patients the alterations observed were mild and non-specific (pleural abnormalities, septal and non-septal lines, micronodules). Our data confirm a rather high prevalence of pleuropulmonary alterations in patients with RA, even in the absence of respiratory symptoms. However, we found evidence of FA much less frequently than Dawson et al. This difference may only be partly explained by patient selection: not all our patients had respiratory symptoms and almost half of them had RA of short duration. The newly available diagnostic techniques such as HRCT scanning have increased interest in evaluating patients with connective tissue disease. However, the clinical relevance of the frequently observed pulmonary alterations in patients with RA has still to be elucidated, as well as the best diagnostic approach to respiratory involvement in this multifaceted disease.

G Provenzano
Division of Respiratory Diseases, A.O. “Villa Sofia CTO”, 90143 Palermo, Italy; giuseppe.provenzano@tin.it

References

CD-ROM REVIEW
Pediatric Respiratory Examination

This CD-Rom has been produced as a multimedia based interactive learning tool for a wide spectrum of healthcare professionals including general practitioners, junior doctors, nurses, physiotherapists, and medical students. As such, it will find wide appeal to those who wish to learn or brush up on paediatric respiratory examinations. The authors and designers should be congratulated for producing a CD-Rom which is highly intuitive and easy to navigate. The pictures, videos and case studies are of high quality and can be viewed with an informative running commentary, although unfortunately the commentaries cannot be fast forwarded or rewound to find passages of particular interest. The case studies provide excellent examples of classic paediatric auscultatory findings such as wheeze, stridor, and the fine inspiratory crepitations of bronchiolitis.

The Pediatric Respiratory Examination CD-Rom serves as a good template on which other system examination CD-Roms could be designed.

K Tan

NOTICE
Scadding-Morriston Davies Joint Fellowship in Respiratory Medicine 2002
This fellowship is available to support visits to medical centres in the UK or abroad for the purpose of undertaking studies related to respiratory medicine. Applications are invited from medical graduates practising in the UK, including consultants and irrespective of the number of years in that grade. There is no application form, but a curriculum vitae should be submitted together with a detailed account of the duration and nature of the work and the centres to be visited, confirming that these have agreed to provide the facilities required. Please state the sum of money needed for travel and subsistence. A sum of up to £15 000 can be awarded to the successful candidate, or the sum may be divided to support two or more applications. Applications should be sent to Dr I A Campbell, Secretary to the Scadding-Morriston Davies Fellowship, Llandough Hospital, Penarth, Vale of Glamorgan CF64 2XX, UK by 31 January 2002.

CORRECTION
In the article entitled “Influence of age and disease severity on high resolution CT lung densitometry in asthma” by F Mitsunobu et al which appeared in the November 2001 issue of Thorax (2001;56:851–6), an error occurred in table 3 on page 854. The heading to the first column which appeared as “MLD (HU) (R² = 0.0524)” should read “MLD (HU) (R² = 0.522)”.

www.thoraxjnls.com