seem to be specific to PCH, demonstrating the usefulness of HRCT scanning for diagnosis of this disease. Other previously reported CT findings of the disease include increased soft tissue density of the mediastinum and mediastinal and hilar lymph adenopathy, but such findings were absent in our case.

Possible explanations for the stable condition of our case over a long period are either that it was a chance discovery of an early phase of the disease by HRCT scanning or that PCH has separate subtypes with differing speeds of progression. Wider use of HRCT scanning and more extensive understanding of PCH would resolve this issue in the future.

The authors thank Professor Rubin M Tuder (Department of Pathology-Surgical Pathology Laboratory, University of Colorado Health Sciences Center) and Professor Takesaburo Ogata (Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences) for their pathological review of the case. This work was supported by funding from the Ministry of Education of Japan.

LETTERS TO THE EDITOR

Vibration during high frequency ventilation in neonates

Since there is no report quantifying vibration imposed upon neonates, we prospectively studied the vibration produced during high frequency ventilation (HFV) and compared it with that during conventional mechanical ventilation (CMV) of studied patients and weight matched controls (±250 g) receiving CMV or breathing spontaneously. A non-invasive accelerometric sensor (Analog Devices ADXL05, Norwood, MA, USA) was placed at the mid sternum or postauricular cranium to measure the linear vibration transmitted to the body and head, respectively (amplitude in time and frequency domains expressed in units of “g”).

From April to October 1998 we enrolled seven neonates treated with HFV (mean [SD] weight 2210 (1680) g, gestation 32 (7) weeks) and 14 weight matched controls (n=7, 2100 (1730) g, 31 (8) weeks; spontaneous breathing group: n=7, 2230 (1520) g, 32 (7) weeks). The groups were not different with regard to body weight, length, and head circumference. Neonates received HFV at a frequency of 12 Hz, mean airway pressure of 14 (2) cm H2O, amplitude of 39 (10) cm H2O, and back up CMV at 6 breaths/min. Higher amplitudes of vibration were detected during HFV than during CMV (0.098 (0.026) g v 0.017 (0.006) g at the chest and 0.011 (0.003) g v 0.007 (0.001) g at the cranium, p<0.05) in six HFV treated neonates. One HFV treated neonate did not tolerate the switch to CMV. The vibrations at the chest and postauricular cranium in seven HFV treated neonates were higher than those of weight matched controls (fig 1, p=0.001), whereas no significant difference was found between the control groups. A higher amplitude of vibration at the chest was found in neonates with an adverse outcome than in normal survivors (0.136 (0.014) g v 0.087 (0.024) g, respectively), while demographic and duration and amplitude of HFV were not different. Interestingly, the vibration at the chest exceeded the limit of whole body vibration in adults (0.05 g at 12.5 Hz third octave band for 24 hours per ISO 2631).

The significance of our observations is not known. While cardiovascular instability is commonly observed in neonates during HFV and has been related to a high lung volume ventilation strategy, cardiovascular effects of vibration have been reported in animal and clinical studies.1 We speculate that the vibration during HFV may also contribute to the haemodynamic instability in neonates.
Furthermore, the effect of vibration on the developing brain is uncertain. We do not know whether the vibration will compromise the cerebral haemodynamic stability resulting in adverse neurological outcomes, especially in premature neonates who transmit vibration more efficaciously because of less body mass and fat compared with term neonates. Moreover, the combined effects of vibratory stress and environmental noise may contribute to hearing loss.

Although no definitive vibration disease has been recognized in neonates, we have demonstrated the inadvertent exposure of neonates to excessive vibration. Research is required to examine the significance of HFV-induced vibration and to reduce the vibration without compromising its effectiveness in critically ill neonates.

P-Y CHEUNG
Department of Newborn Medicine, Royal Alexandra Hospital, 10240 Kingsway Avenue, Edmonton, AB, Canada T6H 3V9
poyin@ualberta.ca

P-Y CHEUNG* K K FYFE† P C ETCHES‡ C M T ROBERTSON* Departments of Paediatrics* and Mechanical Engineering‡, University of Alberta, Edmonton, Alberta, Canada
D B VICKAR
Department of Diagnostic Imaging, Royal Alexandra Hospital, Edmonton, Alberta, Canada

National survey of detention and TB

In England and Wales the power to detain individuals with tuberculosis who pose a threat to public health lies principally within sections 37 and 38 of the Public Health Act 1984. Section 37 authorises a local authority or doctor to examine the significance of HFV-induced vibration and to reduce the vibration without compromising its effectiveness in critically ill neonates.

P-Y CHEUNG
Department of Newborn Medicine, Royal Alexandra Hospital, 10240 Kingsway Avenue, Edmonton, AB, Canada T6H 3V9
poyin@ualberta.ca

P-Y CHEUNG* K K FYFE† P C ETCHES‡ C M T ROBERTSON* Departments of Paediatrics* and Mechanical Engineering‡, University of Alberta, Edmonton, Alberta, Canada
D B VICKAR
Department of Diagnostic Imaging, Royal Alexandra Hospital, Edmonton, Alberta, Canada

National survey of detention and TB

In England and Wales the power to detain individuals with tuberculosis who pose a threat to public health lies principally within sections 37 and 38 of the Public Health Act 1984. Section 37 authorises a local authority or doctor to examine the significance of HFV-induced vibration and to reduce the vibration without compromising its effectiveness in critically ill neonates.

P-Y CHEUNG
Department of Newborn Medicine, Royal Alexandra Hospital, 10240 Kingsway Avenue, Edmonton, AB, Canada T6H 3V9
poyin@ualberta.ca

P-Y CHEUNG* K K FYFE† P C ETCHES‡ C M T ROBERTSON* Departments of Paediatrics* and Mechanical Engineering‡, University of Alberta, Edmonton, Alberta, Canada
D B VICKAR
Department of Diagnostic Imaging, Royal Alexandra Hospital, Edmonton, Alberta, Canada

the general population. The mean age of onset was 57 years, significantly older than the 40 years reported in patients from tertiary centres and quoted by Conron and Beynon. We found there was a slight male preponderance (65%), also shown in many previous studies. The commonest sites of extraspinal involvement were, in descending frequency, the nervous system, joints and muscles, kidneys, skin, heart, and gastrointestinal tract. Involvement of the gastrointestinal tract occurred in only 30% and abdominal pain was uncommon. Cardiac involvement occurred in 44% and was the cause of death in two. Renal involvement, although occurring in nearly half the patients, was usually mild and none had severe renal failure.

The mean age of onset of asthma was 50 years and, although not reported, the asthma was not usually troublesome or severe when the cystic fibrosis was developed. Indeed, very few patients were on oral steroids for their asthma at that time. Very rarely, patients very few patients were on oral steroids for their asthma at that time. Very rarely, patients

We found that the criteria developed by Lanham et al were the most useful, particularly an eosinophil count of 1 x 10^9/L. While this is arbitrary, only one of our patients had a level below this and that was 1.4 x 10^9/L.

B D W HARRISON
D G I SCOTT
Departments of Respiratory Medicine and Rheumatology,
Norfolk and Norwich University Hospital, Norwich, Norfolk NR1 3SR, UK
brian.harrison@norfolk-norwich.nhs.uk

Acute rib fracture pain in CF

Recent papers in Thorax have described the high prevalence of low bone mineral density (BMD) in individuals with cystic fibrosis; these patients are at increased risk of fractures. Rib fracture pain can often be difficult to treat, despite standard analgesics such as non-steroidal anti-inflammatory drugs and opiates. Rib pain can impair sputum clearance and lead to an exacerbation of CF pulmonary disease. There are reports that calcitonin can relieve bone pain for patients with osteolytic metastases2 and osteoporotic vertebral fractures. Recently, we have successfully used subcutaneous calcitonin for the treatment of rib fracture pain in two patients with CF.

A 25 year old woman fractured two ribs when she was crushed in the crowd at a rock concert and a 28 year old man fractured ribs following a bout of coughing. Both patients had CF related low BMD with DEXA Z scores at the lumbar spine of –2.5 and –3.6, respectively. They had been taking long term oral prednisolone at a dose of 10 mg per day. Both patients had controlled uncontrolled pain from their fracture sites despite regular oral analgesics. The female patient was taking paracetamol 1 g qds and morphine sulphate modified release 30 mg bd; the male patient was taking paracetamol 1 g qds and ibuprofen 600 mg tds. Both patients were given courses of antibiotics as the pain was leading to an exacerbation of their CF lung disease. Subcutaneous calcitonin (200 i.u. qds) was given in a dose of 50 units once daily. The pain completely resolved within 48 hours in both cases, and the patients were able to mobilise, perform sputum clearance, the other analgesics were withdrawn, and the chest exacerbations resolved. The calcitonin injections were continued for a total of 7 days, then stopped without recurrence of any pain. Neither patient experienced any side effects from the calcitonin.

Although calcitonin is involved in the regulation of bone turnover, the mechanism of its analgesic action is unknown. It reduces bone resorption and bone New found fluid flow, but may also have central analgesic effects. Conversely, intravenous bisphosphonates, given to improve bone density, were associated with severe bone pain in individuals with CF. Pain control is essential in patients with CF and rib fractures if adequate sputum clearance is to be achieved and an acute deterioration in lung disease avoided. Calcitonin should be considered as an analgesic in this situation. Severe bone pain may reduce morbidity and mortality associated with rib fractures in this group of patients.

A M JONES
M E DODD
A K WEBB
Adult Cystic Fibrosis Centre,
Whipps Cross Hospital, Manchester M13 9EF, UK
andmark@hotmail.com

P L SELBY
Department of Medicine,
University of Manchester, Manchester M13 9WT, UK

Endothelin in acute exacerbations of COPD

We read with interest the article by Roland et al on endothelin-1 (ET-1) levels in exacerbations of chronic obstructive pulmonary disease (COPD). The authors found increased sputum levels of ET-1 in patients with COPD during an exacerbation. This putative increase in ET-1 circulating levels may enhance bone turnover and bone mineral density in adults with cystic fibrosis.

Letters to the editor
819

Chest

CF and antistaphylococcal prophylaxis

Dr Robinson’s review of cystic fibrosis (CF) touches on the use of continuous anti-staphylococcal antibiotic prophylaxis. Dr Robinson reiterates the oft repeated assertion that there is an association between the use of prophylactic antibiotics and the early acquisition of pulmonary infection with Pseudomonas aeruginosa in patients with CF. This putative association has entered CF folklore but is not supported by any published evidence. The paper cited by Robinson describes a pilot study of cephalixin which lasted 2 months. A subsequent multicentre, randomized, placebo controlled trial of cephalixin, commenced in children under 2 years, has been undertaken and its methodology described. However, no results have so far appeared in the published literature.

We have recently published an updated systematic review of randomised controlled trials of prophylactic antibiotics in CF. This describes data from three studies involving 185 children. We found that fewer children

www.thoraxjnl.com

A M JONES
M E DODD
A K WEBB
Adult Cystic Fibrosis Centre,
Whipps Cross Hospital, Manchester M13 9EF, UK
andmark@hotmail.com

Chest

CF and antistaphylococcal prophylaxis

Dr Robinson’s review of cystic fibrosis (CF) touches on the use of continuous anti-staphylococcal antibiotic prophylaxis. Dr Robinson reiterates the oft repeated assertion that there is an association between the use of prophylactic antibiotics and the early acquisition of pulmonary infection with Pseudomonas aeruginosa in patients with CF. This putative association has entered CF folklore but is not supported by any published evidence. The paper cited by Robinson describes a pilot study of cephalixin which lasted 2 months. A subsequent multicentre, randomized, placebo controlled trial of cephalixin, commenced in children under 2 years, has been undertaken and its methodology described. However, no results have so far appeared in the published literature.

We have recently published an updated systematic review of randomised controlled trials of prophylactic antibiotics in CF. This describes data from three studies involving 185 children. We found that fewer children

www.thoraxjnl.com

A M JONES
M E DODD
A K WEBB
Adult Cystic Fibrosis Centre,
Whipps Cross Hospital, Manchester M13 9EF, UK
andmark@hotmail.com

2 Reid AJC, Harrison BDW, Watts RA, et al.
The steering group of the North American cephalixin trial have indicated that its results will be published soon (Eliezer Nussbaum, personal communication). However, until there is published evidence from at least one properly designed randomised controlled trial, the proposal that prophylaxis encourages pulmonary infection with \(P. \) aeruginosa remains entirely speculative.

A SMYTH
Department of Paediatrics, Nottingham City Hospital, Nottingham NG5 1PB, UK
DvelaSmyth@compuserve.com

S WALTERS
Department of Public Health and Epidemiology, University of Birmingham, Birmingham B15 2TT, UK
s.walterr@bham.ac.uk

AUTHOR’S REPLY

I thank Drs Smyth and Walters for their comments concerning the issue of whether antistaphylococcal prophylaxis leads to a higher risk of colonisation with \(P. \) aeruginosa in patients with cystic fibrosis. I share their concern as to the lack of definitive data supporting this notion and, indeed, tried to illustrate this in my article by stating “There is some evidence that it may be associated . . .” I would suggest, however, that the authors’ evidence of a lack of association is equally thin—to quote a multicentre trial whose methodology was presented as an abstract some 9 years ago but whose results do not appear to have ever been published in a peer reviewed journal is certainly not basing one’s evidence on hard evidence based facts. I did not mention the review by Smyth and Walters in my own paper as I submitted my review some 18 months before theirs had been published; however, the authors did not include in their own letter discussion of the recent paper by Rajten et al using data from the German CF database which included 639 patients, all under 18 years of age and \(P. \) aeruginosa negative prior to entry in the study. 48.2% of the patients received continuous antistaphylococcal treatment, 40.4% received intermittent antibiotic treatment, and 11.4% received no antibiotic treatment. While the rate at which patients acquired positive respiratory cultures for \(P. \) aeruginosa was significantly lower in the group receiving continuous antistaphylococcal antibiotic treatment than in those receiving no such treatment, patients receiving continuous antistaphylococcal antibiotic treatment had a significantly higher rate of \(P. \) aeruginosa acquisition than patients receiving only intermittent or no antibiotic treatment. This difference was especially apparent for children under the age of 6 years. The authors concluded that “continuous therapy with antistaphylococcal antibiotics directed against \(S. \) aureus increases the risk of colonisation with \(P. \) aeruginosa”.

This interesting study I believe again supports my original statement that “there is some evidence that it (continuous antistaphylococcal antibiotic therapy) may be associated with earlier acquisition of \(P. \) aeruginosa”. F ROBINSON
Cystic Fibrosis Unit, Department of Respiratory Medicine, Royal Children’s Hospital, Melbourne, Australia 3052
philrob@cryptic.rch.unimelb.edu.au

3 Stuman HR, Marks MI. Cephalaxin prophylaxis in newly diagnosed infants with cystic fibrosis (North American Cystic Fibrosis Conference 1992: 147–8 (abstract)).

NOTICES

The Dr H M (Bill) Foreman Memorial Fund

The Trustees of the above fund invite applications for grants relating to study in respiratory disease and allied fields. Limited funds are available for registered medical practitioners to assist in travelling to countries other than their own to study respiratory disease, and also for support for clinical research abroad.

CORRECTION

In the “Statement on Malignant Mesothelioma in the United Kingdom” by the British Thoracic Society Standards of Care Committee which appeared in the April issue of Thorax (2001;56:250–65), the telephone number given for the National Mesothelioma Helpline on page 264 is incorrect. The correct number is 0113 206 6466. The email address is mavisro@ulh.northy.nhs.uk