PEF versus FEV₁

The assertion by Dr Thiadens and colleagues₁ that identification of airflow limitation and estimation of its reversibility by a bronchodilator is less reliable when measured by peak expiratory flow (PEF) than by forced expiratory volume in one second (FEV₁) cannot be allowed to go unchallenged. They measured both values with a Microlab 3300 turbine spirometer, disregarding the fact that, in primary care, PEF is almost always measured by peak flow meters of variable orifice type which employ an entirely different principle and give considerably higher values. Jones and Mullee₂ who compared a similar Microlab turbine spirometer with a micro-liter spirometer, found that values of PEF measured by the latter were, on average, 87 l/min higher. Hence, the values reported by Thiadens et al would have been much higher if they had been measured with a peak flow meter.

To compare the reliability of PEF and FEV₁ for estimating magnitude of airflow limitation, Thiadens et al expressed observed values of each as percentage predicted, using the reference values for each sex recommended by the European Respiratory Society (ERS).³ Those for predicting PEF were derived from regression equations which describe a linear fall with age and give predicted values much lower than curvilinear regressions such as those of Nunn and Gregg,⁴ which an ERS Working Party on PEF⁵ subsequently judged to be the most satisfactory reference values for prediction. The difference in l/min between predicted values derived from the latter and those from the ERS regressions was roughly equal in each sex (fig 1) to the difference between the two devices. In our observed values and the values which would have been obtained with a peak flow meter. Since they are of opposite direction, they obscure the spuriously low absolute values measured by the turbine spirometer. Nevertheless, Thiadens et al considered that, in 19.2% of their patients, low values of PEF were associated with normal values of FEV₁ whereas in only 3.3% of patients was a normal value of PEF associated with an abnormally low value of FEV₁.⁶ To evaluate the relative merits of FEV₁ and PEF as indices of bronchodilator reversibility Thiadens et al compared changes in FEV₁ expressed as percentage differences of predicted values, with changes in PEF, both absolute and percentage, to the initial values (see table 3). We agree that measuring longitudinal reversibility with a corticosteroid is the best method, although we prefer to use the FEV₁ value at the start and the FEV₁, after some weeks of corticosteroid treatment as outcome parameter. This issue was also discussed in the editorial by Professor Jones.

Authors’ reply

Dr Gregg’s remarks on our paper concern four major points: (1) the differences between the Micro medical spirometer and the mini-Wright peak flow meter; (2) the choice of predicted values; (3) the “dissimilar manner” in which changes in PEF were compared with changes in FEV₁; and (4) the use of changes in the FEV₁/PEF ratio.

(1) It is true that there are differences between the two devices based upon the different principles—turbine flow measurement and variable orifice peak flow measurement. As we stated in the discussion part of the paper, the turbine flow meter yields slightly lower values than a pneumotachograph⁷ and the variable orifice peak flow meter yields slightly higher values (200–300 l/min) than a pneumotachograph in the mid region.⁸ In both cases the pneumotachograph value is considered the reference value. Without pertaining to the brand of the portable spirometer used, it appears that the turbine values generally meet the criteria for monitoring asthma in children and ATS.¹ In any case, the differences between the devices are systemic and should not interfere with the results of the study, provided that the same device is used throughout it.

(2) In the discussion this issue has also been questioned. The choice of the predicted values depends in part on the equipment used. The ERS predicted values for PEF are obtained from a mixture of pneumotachograph and mini-Wright peak flow data whereas the values proposed by Dr Gregg are obtained from mini-Wright peak flow meters. The values produced by the turbine spirometer come closest to the pneumotachograph values. In our study, the ERS values are probably the best choice.

(3) This issue was referred to in the discussion of our paper. We did not only compare the changes in FEV₁, expressed as percentage differences of predicted values, with changes in PEF, both absolute and percentage differences in absolute values); we also compared changes in FEV₁, as percentages of the initial values (including absolute improvement of 200 ml) with changes in PEF, both absolute and percentage, to the initial values (see table 3). We agree that measuring longitudinal reversibility with a corticosteroid is the best method, although we prefer to use the FEV₁ value at the start and the FEV₁, after some weeks of corticosteroid treatment as outcome parameter.

(4) Generally, the FEV₁/PEF ratio is a reliable indicator of bronchial obstruction provided the manoeuvre is carried out correctly. This is a problem with hand held spiro-meters, and the recommendations are that the expiratory curve be followed for a time to ensure that a true beginning and end of the forced expiration is detected. This is not possible with hand held spirometers and inevitably leads to falsely low FEV₁ values. In our opinion, therefore, it is wise to exclude this parameter from analysis.

Although Dr Gregg is very definitive in his opinion about the value of peak flow measurements, especially useful with the mini-Wright meter, he has not been able to convince us, nor has he referred to validity studies about the accuracy of this device in demonstrating (reversible) airflow limitation.

IAN GREGG
Eynsham, Winch, Oxford, UK


Differentiation between mitral stenosis and coexisting PPH

I read with great interest the case report by Langleben et al of a woman with coexisting mitral stenosis and primary pulmonary hypertension (PPH) or pleuropulmonary artheriopathy who succumbed to operation for relief of her mitral stenosis. The failure of the patient’s pulmonary hypertension to decrease postoperatively led to her fatal outcome because the coexisting primary pulmonary hypertension was not recognised preoperatively.

I would like to call attention to the fact that the diagnosis should have been suspected preoperatively because her pulmonary artery wedge pressure was only modestly raised (16 mm Hg; normal = 12) and her pulmonary vascular resistance was extremely high (1923 dynes s cm⁻¹; normal = 67 (30)). In the presence of severe mitral stenosis the pulmonary artery wedge pressure, which reflects the left atrial pressure, is usually substantially increased whereas the pulmonary vascular resistance is usually normal or mildly raised in the presence of “reactive” as well as “passive” pulmonary hypertension. On the other hand, in primary pulmonary hypertension the pulmonary artery wedge pressure is usually normal and the calculated pulmonary vascular resistance is extremely high.

Case reports like that of Langleben et al illustrate the importance of careful analysis of the haemodynamic data obtained at cardiac catheterisation “in order to identify pleuropulmonary artheriopathy (or primary pulmonary hypertension) obscured by or masquerading as other disorders” such as mitral stenosis.

AUTHORS’ REPLY

Dr Cheng’s statement that the pulmonary vascular resistance can rise disproportionately to the left atrial pressure in humans.1 Moreover, it has been recognised that extreme elevations in pulmonary vascular resistance can occur in mitral stenosis in at least 10% of patients in series.2 This likely represents a genetic variation within the population as we discuss in our case report. In addition, the literature describes cases of extreme elevations in pulmonary vascular resistance in mitral stenosis, even in the presence of a “low” wedge pressure.3 Our patient fits this profile.

Thus, this case was much more complex than Dr Cheng implies. Had we ignored the echocardiographic data and initially assumed, as he does, that she obviously had primary pulmonary hypertension, then administration of currently accepted therapy for that disease—that is, vasodilators—would probably have killed her by producing pulmonary oedema from an inability of the lung to drain through a stenosed mitral valve.

That potential outcome suggests that, while careful analysis of haemodynamic data obtained at cardiac catheterisation is of course, essential, a superficial perusal of the subtleties of pulmonary vascular disease is equally dangerous.

D. LANGLEBEN
R. SCHLESINGER
Faculty of Medicine,
Sir Mortimer B Davis Jewish General Hospital,
Montreal, Quebec H3T 1E2
Canada


Caring for indigenous Australian children with asthma

We applaud Dr Partridge’s recent thought provoking editorial4 which is timely with recent articles focusing on medicine, poverty, and marginalisation.5 We wish to add that the issues raised by Partridge are also highly relevant in Australia with respect to indigenous Australians who have unacceptably high levels of morbidity and mortality compared with non-indigenous Australians.6 Also, in addition to the influence of the doctor/patient relationship on health care, we wish to question the model of care used by doctors and other health care providers when serving minority groups.

We have had the privilege of providing a paediatric respiratory outreach service to remote indigenous communities in far north Queensland over the last three years. In these children we found a high rate of persistent asthma and non-optimal use of asthma devices as well as poor asthma knowledge. Also, by using the community controlled primary health care model instead of the standard practice of servicing through the hospital system, we were able to achieve very high attendance rates (95%) as well as in our recently completed prevalence study (95%) (unpublished). Although high attendance rates may not necessarily equate to better care, they do provide a greater opportunity for addressing important elements of health maintenance such as health education and preventative medicine in contrast to an “acute medicine” approach.

It is easy for doctors to resort to a defeatist approach when providing care to minority groups—put the onus on the patients and blame culture and language differences. It is harder to examine and question one’s interaction with one’s patients and critically examine how best to provide a genuine service. As stated by Richard Smith: “they deserve the best, not the poorest, care”.

A B CHANG
Associate Professor of Paediatrics,
Flinders University Northern Territory Clinical School,
Alice Springs Hospital,
Australia

C SHANNON
Director of Indigenous Health Program,
Queensland Health,
Australia

I B MASTERS
Deputy Director of Respiratory Medicine,
Royal Children’s Hospital,
Brisbane, Australia


AUTHORS’ REPLY

Professor Chang and Drs Shannon and Masters make important points that widen the issue to remind us all that there are other sectors of society who warrant special attention. My personal view is that the problems that affect asthma care delivery are the same throughout the world; it is only the magnitude of the individual problems that varies from country to country.

MARTYN P PARTRIDGE
The Chest Clinic,
Whips Cross Hospital,
London E14 1NR, UK
email: mpartridge@whipscross.demon.co.uk

Intravenous montelukast in acute asthma: expensive aminophylline?

We read with interest the recent paper by Dockhorn et al comparing the effects of single doses of intravenous and oral montelukast on forced expiratory volume in one second (FEV₁) in patients with chronic persistent asthma.7 We agree with the accompanying editorial, that a study of montelukast in acute severe asthma is now warranted.8 Indeed, few
published studies have examined the use of leukotriene receptor antagonists in patients with severe persistent asthma.1

There are several good reasons why an intravenous leukotriene receptor antagonist might be effective in acute severe asthma, including evidence that high dose oral steroids do not affect leukotriene synthesis in vivo,2 and that induced sputum cysteinyl leukotriene concentrations are significantly higher in subjects with acute severe asthma than in patients with milder asthma and normal controls which suggests that leukotrienes may be more functionally important in patients with acute severe asthma.3

The question that most clinicians wish to answer is whether adding an intravenous leukotriene receptor antagonist will produce further improvements in patients with acute severe asthma who have already received conventional first line treatment including nebulised high dose salbutamol, ipratropium bromide, and systemic corticosteroids.4

In other words, is an intravenous leukotriene receptor antagonist any better as second line intravenous treatment than aminophylline or salbutamol? The results of such studies are awaited with keen interest. It is behoven upon the pharmaceutical industry to sponsor such studies, asking clinically relevant questions including evidence of leukotriene receptor antagonists as second line intravenous treatment.

OWN J DEMPSEY
BRIAN J LIPWORTH
Asthma & Allergy Research Group, Department of Clinical Pharmacology & Therapeutics, Ninestalls Hospital and Medical School, University of Dundee, Dundee DD1 5SY, UK
email: b.j.lipworth@dundee.ac.uk


AUTHORS’ REPLY We would like to thank Drs Dempsey and Lipworth for their concise thoughts on the topic of the additive effects of antileukotriene drugs in acute asthma.

In chronic asthma antileukotriene drugs have been shown to have additive benefits with β agonists,1-3 corticosteroids,3 and theophylline.4 Since acute asthmatic episodes are included in the spectrum of the asthmatic response, it is highly likely that antileukotriene drugs will provide at least similar additive effects in this setting.

Adult studies with antileukotrienes in acute asthma in addition to usual treatment will be required. Once safety and efficacy have been demonstrated in adequately controlled trials in adults, paediatric studies or trials with active comparators can be considered.

THEODORE F REISS
Merc Research Laboratories, Rahway, New Jersey 07065-0914, USA
email: theodore.reiss@merck.com


TB guidelines

We read the BTS guidelines on the management of tuberculous of greatest interest. For the most part the paper is an excellent summary of best practice and a good reference for a number of difficult situations. We were, however, less happy about the recommendation to move to a four drug regimen for most patients. We wonder if it is legitimate to generalise a practice which may be sensible in London with a significant refugee problem but which may be unnecessary in other parts of the UK.

The recommendation for a four drug regimen is graded as A (requires at least one randomised controlled trial). Two references are given for the statement. One, a conference report,1 lists ethnic risk factors for single and multiple drug resistance. The other, a randomised controlled trial,2 asks clinically relevant questions including evidence that a three drug initial phase is satisfactory in those with a history of prior treatment (irrespective of ethnic group), in ethnic minority groups, and in those who are HIV positive (irrespective of ethnic group).

The scientific and evidence base for short course chemotherapy was set out in detail in the recommendations3 in the section immediately preceding the detailed treatment recommendations commented on by Cookson et al. References 13-19 of the guidelines3 were controlled trials largely with a four drug initial regimen, although giving evidence that a three drug initial phase is satisfactory in those with a history of prior treatment and is not based on current rates of multidrug resistant tuberculosis.4 The 1998 recommendations were made with the knowledge of the drug resistance rates and epidemiology from Mycobact, both published and unpublished.

These data show that drug resistance is not confined to London but occurs in many geographical areas, with significant rates of isoniazid resistance in defined groups—that is, those with a history of prior treatment (irrespective of ethnic group), in ethnic minority groups, and in those who are HIV positive (irrespective of ethnic group).

The scientific and evidence base for short course chemotherapy was set out in detail in the recommendations3 in the section immediately preceding the detailed treatment recommendations commented on by Cookson et al. References 13-19 of the guidelines3 were controlled trials largely with a four drug initial regimen, although giving evidence that a three drug initial phase is satisfactory in those with a history of prior treatment (irrespective of ethnic group), in ethnic minority groups, and in those who are HIV positive (irrespective of ethnic group).

The scientific and evidence base for short course chemotherapy was set out in detail in the recommendations3 in the section immediately preceding the detailed treatment recommendations commented on by Cookson et al. References 13-19 of the guidelines3 were controlled trials largely with a four drug initial regimen, although giving evidence that a three drug initial phase is satisfactory in those with a history of prior treatment (irrespective of ethnic group), in ethnic minority groups, and in those who are HIV positive (irrespective of ethnic group).

The scientific and evidence base for short course chemotherapy was set out in detail in the recommendations3 in the section immediately preceding the detailed treatment recommendations commented on by Cookson et al. References 13-19 of the guidelines3 were controlled trials largely with a four drug initial regimen, although giving evidence that a three drug initial phase is satisfactory in those with a history of prior treatment (irrespective of ethnic group), in ethnic minority groups, and in those who are HIV positive (irrespective of ethnic group).
found more often, for instance in 3–10% of untreated patients, a fourth drug, usually ethambutol but sometimes streptomycin, is added”. There is also no evidence from published national audit studies or from programmatic data to support the statement by Cookson et al that a four drug regimen will “increase side effects or decrease compliance”. The recommendations make explicit the need for thoracic microbiological confirmation and hence drug susceptibility whenever possible, and the need to be aware of rifampicin resistance and the use of molecular methods for detecting its presence. In this part, the recommendations meet the comments of Dr Cookson and colleagues.

PIER ORMEROD
Department of Respiratory Medicine, Blackburn Royal Infirmary
Chairman, Joint Tuberculosis Committee

IAN CAMPBELL
Llandough Hospital
Secretary, Joint Tuberculosis Committee

BOOK REVIEWS


In 1955 the first edition of Donald Hunter’s book Diseases of Occupations was published. He said that he wanted to emphasise the clinical aspects of occupational disease and this remains true in the ninth edition of “Hunter’s”. The five main editors of this edition and the majority of contributors are UK based. However, given that its primary focus is clinical information, its contents ought to be valid worldwide. Clearly, for issues relating to country-specific health legislation, you may need to look elsewhere (although UK readers are catered for reasonably well).

The 1001 pages of this edition of Hunter’s are divided into 11 chapters (parts) with each part being divided into further subsections. Five of the parts are covered sufficiently with one or two subsections (‘Reproduction at work’, ‘Occupational cancer’, ‘Occupational diseases of the skin’, ‘Diseases associated with microbiological agents’, and ‘Diseases related to environmental and occupational factors’), but the chapter on ‘Diseases associated with physical agents’ requires nine subsections. The larger chapters include ‘Diseases associated with chemical agents’ (over 200 pages), ‘Diseases associated with physical agents’ (170 pages), and ‘Occupational lung disorders’ (132 pages). This edition adds in a chapter on ‘Nephrototoxic, neurotoxic, hepatotoxic and haemopoietic effects of workplace exposures’ that is useful in compiling a differential diagnosis list for work related possibilities. The index itself is a healthy 74 pages with a reasonable amount of cross referencing but, if the book was available as a CD-ROM, it would be even better; reference books should embrace this useful technology.

Hunter’s has some particularly readable sections which give the salient facts and information embellished with nuggets of background or historical data on the condition or disease. For example, the section on ‘Hand-arm vibration’ covers diagnosis, treatment/management, current techniques for objective testing with comments on specificity and sensitivity, and just enough on the physics of vibration. It also points out that the adverse health effects were recognised by 1918—all this is contained in eight pages supported by four figures, three tables, and 100 references.

What was the book like over a three month period of use? I would dip into it for a specific query and find myself enticed into further pages of reading. Perhaps this was because of writing this review but, equally, the prose query and find myself enticed into further pages of reading. Perhaps this was because of writing this review but, equally, the prose


Cystic Fibrosis Medical Care is too big to fit into a clinician’s pocket and too small to justify a place on a reference book shelf. It is described as a practical and easy to use reference book, and by the authors as an introduction to the principles and practices of cystic fibrosis medical care. In doing so it has missed its target audience and has fallen between two stools. Some chapters provide an excellent overview of difficult issues surrounding cystic fibrosis care, such as Chapter 3 on the diagnosis of cystic fibrosis, while others, particularly Chapter 4 on the treatment of pulmonary exacerbations, did not address the problem in any depth.

In addition, there is a strong transatlantic emphasis on practical care which may not always be applicable to European cystic fibrosis clinics. As such, this book will appeal to North American practitioners who, accepting its limitations, may wish only to dip into some of the complex issues surrounding cystic fibrosis care.—KHVT

NOTICE

Dr H M (Bill) Foreman Memorial Fund

The trustees of the Dr H M (Bill) Foreman Memorial Fund invite applications for grants relating to study in respiratory disease and allied fields. Limited funds are available for registered medical practitioners to assist in travelling to countries other than their own to study respiratory disease, and also for support for clinical research abroad.

Intending applicants should write for further details to: Dr Brian H Davies, Llandough Hospital, Penarth, Vale of Glamorgan CF64 2XX, UK.