LETTERS TO THE EDITOR

Inhaled fluticasone

I read with interest the article on the effects of inhaled fluticasone propionate and oral prednisolone on markers of airway inflammation in asthma recently published in Thorax by Meijer et al.1 In particular, it was interesting to read that the magnitude of reduction in airway hyperresponsiveness after fluticasone was more pronounced for adenosine 5′-monophosphate (AMP) than for methacholine. Ketchell et al.2 have recently reported that sensitive prediction of the AMP response to inhaled corticosteroids is already apparent as early as 48 hours. Taken together, these findings further support the use of adenosine challenge as a sensitive and convenient non-invasive test of asthmatic inflammation for potential use in diagnosis, monitoring disease activity, and evaluating treatment efficacy.3

In asthma the ability of this test to discriminate the changes in airway reactivity with anti-inflammatory treatment better than histamine or methacholine has also been validated with inhaled budesonide and the new corticosteroid ciclesonide.4 In contrast, in patients with chronic obstructive pulmonary disease (COPD) adenosine appears to be as insensitive as methacholine in detecting changes in airway reactivity after treatment with high dose inhaled steroids.5 This diversity is of diagnostic interest as it may indicate an additional way by which adenosine challenge may be useful in differentiating asthma from “true” COPD.

In contrast to the work by Meijer et al., Taylor et al.6 have shown that adenosine challenge offers substantial advantages (especially in terms of sensitivity) over that of other non-invasive tests, including induced sputum. The premise for this is that adenosine elicits bronchoconstriction by stimulating the release of bronchoconstrictor mediators from cells/nerves within the airway, and thus may be sensitive to the underlying inflammatory state of the airway. The capacity of adenosine to elicit a much greater bronchoconstrictor response and mediator release from mast cells in atopic subjects than in non-atopic subjects7 indicates that atopic status is an important determinant of the response.

Current GINA guidelines recommend careful monitoring of asthma symptoms and pulmonary function and recognise the need for “developing non-invasive test(s) of airway inflammation for use in diagnosis, monitoring the disorder’s activity, and evaluating treatment”.8 Despite the emerging view that adenosine bronchoprovocation may be useful for monitoring disease severity, it is important that well planned and well conducted large clinical trials be performed to confirm that information gained from this test will lead to improved patient management.

RICCARDO POLOSA
School of Medicine, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
e-mail: r.polo@sms.uosoton.ac.uk


AUTHORS’ REPLY We have read the letter by Dr Polosa with great interest. We support his view that adenosine challenge appears to be a sensitive non-invasive test of asthmatic inflammation with potential use in diagnosis, monitoring disease activity, and evaluating treatment efficacy.9 Given these observations, the results of our study would have led to the conclusion that salmeterol produces effective asthma control after six weeks of treatment, even when given as monotherapy. This would be in accordance with the international guidelines1 which state that efficient asthma therapy should be related to symptoms and airflow obstruction. Yet, a considerable treatment difference was detectable in favour of fluticasone when the effects were tested with AMP.

AMP is more specific in assessing changes in different components of airway wall inflammation than methacholine. Improvement in PC20 AMP might therefore be a better predictor of efficient anti-asthma therapy.
than changes in the conventionally used parameters, as advised in current guidelines.

The fact that a review of 20 pages and 211 references resulting from larger observational studies was deemed worth the time that Professor Morice has taken to read it is alarming. Surely the objective is to sift the literature, or is the policy now to publish gargantuan articles of the kind seen in postmenopausal women.

It could be argued that the smaller airways and we examined the extent to which these accounted for the gender differences in obstructive airway disease. As Professor Morice and colleagues point out, cough as a variant of asthma should have been included, particularly since, as two of their references suggest, the lower threshold for cough in response to inhaled aminophylline in women does not appear to be accounted for by methodological differences resulting from larger doses of the agent being delivered to their airways because of their smaller airway size.

We thank them for their references. Of particular interest to us was the observation that the cough was higher in premenopausal than in men, with reversal of these differences after menopause. We attributed these changes to the hormonal effects on the airways of women. This paradox is one that invites further study.

AUTHORS’ REPLY We appreciate the comments of Professor Stockley and Dr Hill that neutrophils should increase during COPD exacerbations and their hypothesis that this was not found in our study because of a possible dilutional effect of the induced sputum technique on lower airway secretions.

Eleven of the 37 sampled exacerbations (30%) were associated with increased sputum volume or sputum purulence. Surely the use of sputum induction in such patients would lead only to dilution of the bronchial secretion obtained, and this may explain some of the negative neutrophil results. Indeed, in our own studies of approximately 140 exacerbations in a similar setting, two thirds of them were purulent in nature and were associated with increases in cytokines in the spontaneously expectorated sample. The purulent samples were associated with an increase in myeloperoxidase concentration and in neutrophil numbers seen on Gram staining. We would have expected the same findings in the paper by Wedzicha and colleagues if the exacerbations were similar.

We consider that it may be appropriate to stratify exacerbations, particularly when trying to assess the role of intervention treatments and the nature of the cytokines present.

R A STOCKLEY
SL HILL
Bayer Lung Resource Centre,
Queen Elizabeth Hospital
Birmingham B15 2TH,
UK

REFERENCES


AUTHORS’ REPLY We appreciate the comments of Professor Stockley and Dr Hill that neutrophils should increase during COPD exacerbations and their hypothesis that this was not found in our study because of a possible dilutional effect of the induced sputum technique on lower airway secretions.

Eleven of the 37 sampled exacerbations (30.7%) in our study1 were associated with purulent sputum, whereas 24 (64.7%) were associated with increased sputum volume and 10 patients had no sputum production at exacerbation. This indicates that 33% of COPD exacerbations are not associated with sputum production.

We have shown previously that the number of viable cells was greater in induced sputum than in spontaneous sputum (65% versus
Diagnosis and assessment of DPLD

In this excellent report the transfer factor (TL) in untreated cryptogenic fibrosing alveolitis is reported as reflecting the extent of fibrosis; it is noted that Kco (TL/VA) does not. Given more space, the authors might have added that Kco can mislead by being normal or increased when alveolar volume is restricted. This is because Kco is based on a proportional model that does not make valid allowance for alveolar volume. An alternative linear model is available and should be used instead.

BOOK REVIEW


This book represents the ninth publication in the Clinical Physiology series published for the American Physiological Society and provides a comprehensive review of the multiple facets of lung growth and development in both health and disease. Particular emphasis has been placed on recent advances at the cellular and molecular level with respect to the complex series of controlled interactions involving genetic, hormonal, and cell-cell interactions that are required for lung development. Each chapter is extensively referenced and presents a succinct review of selected topics relevant to lung development by experts in the field.

Inevitably with a multi-author book such as this, there is considerable variability in presentation style with chapters more accessible to the specialist than others. The inclusion of a glossary would have been beneficial in view of the increasing use of abbreviations in this field. Nevertheless, most of the authors have provided an excellent review of their topic and have clearly indicated, not only the current state of knowledge and the clinical significance of recent research findings, but what still needs to be investigated.

The first part of the book is devoted to lung branching morphogenesis, development of the lung elastic matrix and the importance of elastin in lung structure and function, differentiation of airway epithelial cells, and gene expression in alveolar development. Lung development and angiogenesis, including sections which emphasise the importance of postnatal microvascular maturation and the potential impact of exogenous risk factors such as impaired nutrition and glucocorticoid therapy on lung development and alveolisation, are the subject of an important chapter. Other authors have reviewed the developmental aspects of the pulmonary vasculature and circulation, cellular host defence mechanisms, lung epithelial ion transport (including a fascinating overview of its dysfunction in neonatal lung diseases), cell growth and tissue repair, and the role of bioactive peptides.

The strength of this publication lies in the eclectic mix of topics that are not always covered in books on lung development, and it provides a succinct summary of recent advances and new research in the field. There is now increased awareness that adverse influences on lung development during prenatal and early postnatal life may have lifelong effects. This book should therefore be of potential interest, not only to paediatric pulmonologists, neonatologists, ICU physicians and obstetricians, but also to chest physicians and surgeons dealing with older patients.—JS

NOTICES

COPD: New Developments and Therapeutic Options

A course on “COPD: New Developments and Therapeutic Options” organised by Professors Peter Barnes and Neil Pride will be held on 26–28 September 2000 at Imperial College School of Medicine at the National Heart & Lung Institute in collaboration with the Royal Brompton Hospital, Dovehouse Street, London SW3 6LY. Enquiries to: Postgraduate Education Centre, National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK. Telephone: 020 7351 8172. Fax: 020 7351 8246. Email: shortcourses@nhl.ic.ac.uk

Pharmacology of Asthma

A course on “Pharmacology of Asthma” organised by Professor Peter Barnes will be held on 20–23 November 2000 at Imperial College School of Medicine at the National Heart & Lung Institute in collaboration with the Royal Brompton Hospital, Dovehouse Street, London SW3 6LY. Enquiries to: Postgraduate Education Centre, National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK. Telephone: 020 7351 8172. Fax: 020 7351 8246. Email: shortcourses@nhl.ic.ac.uk