Supplementary oxygen therapy in COPD: is it really useful?

P M A Calverley

Many patients with severe chronic obstructive pulmonary disease (COPD) develop hypoxaemia at rest when awake as their disease progresses. This may or may not be accompanied by hypercapnia but is a poor prognostic feature, independent of the forced expiratory volume in one second (FEV₁).¹ For many years the scientific study of COPD was driven by the need to gain a greater understanding of the processes which led to these disorders of gas exchange. Ultimately this led to the introduction of effective treatments designed to increase the arterial oxygen tension; however, this was often accompanied by hypercapnia but is a poor prognostic feature, independent of the forced expiratory volume in one second (FEV₁).¹

For many years the scientific study of COPD was driven by the need to gain a greater understanding of the processes which led to these disorders of gas exchange. Ultimately this led to the introduction of effective treatments designed to increase the arterial oxygen tension; however, this was often accompanied by hypercapnia but is a poor prognostic feature, independent of the forced expiratory volume in one second (FEV₁).¹

The role of supplementary oxygen in this setting has been superseded by other therapies. The introduction of domiciliary oxygen therapy in the 1980s was driven by the need to improve exercise capacity and reduce the intensity of breathlessness. Whether or not the authors compared this with the use of other interventions such as rehabilitation, the benefits of domiciliary oxygen therapy have been well documented. More recently, the use of oxygen during exercise has gained increasing attention and has been shown to improve exercise capacity and reduce the intensity of breathlessness.

The physiological basis of exercise limitation in COPD has been challenged in recent years by the observation that end expiratory lung volume rises during exercise and is closely related to the degree of breathlessness.² Empirical studies have shown that supplementary oxygen increases the six minute walking distance compared with placebo in COPD,³ ⁴ and that these effects are most marked when tests of endurance rather than maximum exercise are conducted.⁵ More detailed physiological studies suggest that this may be achieved by a reduction in minute ventilation rather than a specific "dyspneic" effect.⁶ These benefits have been shown in patients who are relatively normoxaemic at rest⁷ but many COPD patients show prolonged periods of oxygen desaturation during exercise, the severity of which appears to be related to the carbon monoxide transfer factor (TLCO).⁸ Indeed, the presence of such oxygen desaturations is required for the prescription of portable oxygen systems in North America. Pulmonary rehabilitation has been shown to be highly effective in improving exercise performance and reducing breathlessness in COPD.⁹ However, there has been concern that, in promoting active exercise regimes, rehabilitation might worsen exercise hypoxaemia. Conversely, the correction of hypoxaemia during exercise might lead to more effective rehabilitation by permitting a greater degree of training than would otherwise be possible.

The role of supplementary oxygen in this setting has been superseded by other therapies. The introduction of domiciliary oxygen therapy in the 1980s was driven by the need to improve exercise capacity and reduce the intensity of breathlessness. Whether or not the authors compared this with the use of other interventions such as rehabilitation, the benefits of domiciliary oxygen therapy have been well documented. More recently, the use of oxygen during exercise has gained increasing attention and has been shown to improve exercise capacity and reduce the intensity of breathlessness.

This study raises a number of methodological points which apply to many other investigations. As the authors concede, it is a relatively small investigation and the effects of oxygen would need to be quite substantial before a study of this size would be able to show them, at least in terms of improved exercise capacity. Whether the extra inconvenience of training with oxygen is merited if there is no substantial gain to be made is an important point. It is a pity that the authors did not compare the interaction between rehabilitation and the acute effects of oxygen at the end of their study as this might be a justification for combining these modalities. They used the shuttle walking test as their measure of exercise performance.¹⁰ This is a well validated tool which is certainly sensitive to change in rehabilitation, and is a halfway house between an endurance and maximum exercise test. However, the effects of oxygen are greatest in terms of endurance exercise and so it is possible that either a six minute walking test or the modified shuttle walking test¹¹ adapted for endurance purposes would have been a more sensitive outcome here. The fact that breathlessness was improved without changing the walking distance also raises the problem of studying any intervention where the response includes more than one degree of freedom. Patients who receive oxygen or undergo physical training may subsequently choose to exercise to the same level of breathlessness as previously but, because they are fitter or less distressed, they cover a greater distance. Alternatively, they may walk for the same distance but be fitter or less distressed. The extent to which individuals consistently adopt a particular strategy has not been studied but clearly this complicates treatment studies such as this one and is a further reason for increasing the number of patients included. It is encouraging to see that oxygen desaturation in the placebo limb of this investigation was not associated with specific adverse effects, nor did it limit the benefits of pulmonary rehabilitation. Investigators have noted previously that acute treatment with bronchodilator drugs can worsen oxygen saturation but improve exercise performance and breathlessness,¹² so the...
Many patients with advanced COPD do not use oxygen during exercise, particularly in the UK where the availability of liquid oxygen systems is very limited. Much more commonly they resort to using oxygen as a way of rapidly relieving their breathlessness and this explains the large number of oxygen cylinders in peoples’ homes. Surprisingly, there are remarkably few data about the frequency with which they are used or the effectiveness of this particular treatment. Administration of compressed gas, whether air or oxygen, can have a cooling effect on the face which itself may diminish the sensation of breathlessness, and this has been thought to explain the improvement in dyspnoea seen when breathing cool air in patients with COPD.20 Very few studies have looked scientifically at whether or not oxygen is actually beneficial. In the most carefully conducted of these a significant benefit was seen in patients who were randomised to receive oxygen rather than compressed air when resting; breathlessness was used as the outcome measure.21 However, many patients choose to use their oxygen only after breathlessness has been induced by some physical exercise and so the report by Killen and Corris is very relevant to clinical practice. They examined the severity of breathlessness induced by standardised stair climbing in a group of 18 patients with severe COPD (FEV₁, 26% predicted) but who were not sufficiently hypoxaemic to merit domiciliary oxygen treatment. Only subjects who showed desaturations below 90% when exercising were included in the randomised crossover phase of the study. The intensity of breathlessness when they received air at rest and at the end of exercise was compared with the values after either oxygen before exercise or oxygen after exercise. Possibly because of the size of the investigation and the variability of the dyspnoea scores, individual comparisons between the three limbs were inconclusive. However, when treatment with oxygen was compared with treatment while receiving air, the oxygen treated patients clearly felt less breathless. Despite this, when asked to report their personal preference the patients could not distinguish air from oxygen. Clearly, it would be inconclusive. However, when treatment with oxygen was compared with treatment while receiving air, the oxygen treated patients clearly felt less breathless. Despite this, when asked to report their personal preference the patients could not distinguish air from oxygen. Clearly, it would be difficult to know how reproducible this kind of practical exercise task is and, in particular, whether patients show the kind of trade off between dyspnoea and exercise performance already noted elsewhere. Perhaps an even more relevant outcome would be the rate at which breathlessness resolved, and this is not clearly described in the present paper. The use of a different “short burst” exercise protocol may explain the benefits reported in this study compared with previous studies of pre-oxygenation in COPD. Moreover, the patient groups studied here are more severe than in most comparative investigations and are thus closer to the kind of patient likely to receive this treatment.

Investigation of the effectiveness of oxygen therapy has become unfashionable in the last decade following the key studies mentioned earlier. The papers by Garrod et al and Killen and Corris illustrate that there is still much to be learned about the practical application of this expensive and widespread form of treatment. For many patients the use of “as needed” supplementary oxygen is likely to be as much a marker of their overall deterioration as an effective means of alleviating their symptoms, and behavioural considerations about who receives treatment and why are likely to be as important as physiological ones. Nonetheless, these data show that oxygen can have a useful role when applied acutely in the management of patients with COPD. Equally clearly, not everyone benefits and future studies should focus on identifying those people who are likely to experience most improvement with this treatment.

P M A CALVERLEY
Pulmonary and Rehabilitation Research Group, University Clinical Department, Fazakerley Hospital, Liverpool L9 7AL, UK
email: pma@liverpool.ac.uk