Effect of non-invasive mechanical ventilation on sleep and nocturnal ventilation in patients with chronic respiratory failure

Bernd Schönhofer, Dieter Köhler

Abstract
Background—Chronic respiratory failure (CRF) is associated with nocturnal hypoventilation. Due to the interaction of sleep and breathing, sleep quality is reduced during nocturnal hypoventilation. Non-invasive mechanical ventilation (NMV), usually performed overnight, relieves symptoms of hypoventilation and improves daytime blood gas tensions in patients with CRF. The time course of the long term effect of NMV on sleep and breathing during both spontaneous ventilation (withdrawing the intervention) and NMV was investigated in patients with CRF due to thoracic restriction.

Methods—Fifteen consecutive patients (13 women) of mean (SD) age 57.9 (12.0) years with CRF due to thoracic restriction were included in the study. During the one year observation period four polysomnographic studies were performed: three during spontaneous breathing without NMV—before initiation of NMV (T0) and after withdrawing NMV for one night at six months (T6) and 12 months (T12)—and the fourth during NMV after 12 months (T12+). Daytime blood gas tensions and lung function were also measured.

Results—Spontaneous ventilation (in terms of mean oxygen saturation) progressively improved from T0 to T12—during both REM sleep (24.8%, 95% CI 12.9 to 36.9) and NREM sleep (21.5%, 95% CI 12.4 to 30.6). Sleep quality during spontaneous ventilation also improved in terms of increased total sleep time (26.8%, 95% CI 11.6 to 42.0) and sleep efficiency (17.5%, 95% CI 5.4 to 29.6) and decreased awakenings (54.0%, 95% CI 70.3 to 37.7). Accordingly, REM and NREM sleep stages 3 and 4 significantly improved. However, the most significant improvements in both nocturnal ventilation and sleep quality were seen during NMV at 12 months.

Conclusions—After long term NMV both spontaneous ventilation during sleep and sleep quality in patients with CRF due to thoracic restriction showed evidence of progressive improvement compared with baseline after withdrawal of NMV for a single night at six and 12 months. However, the greatest improvements in nocturnal ventilation and sleep were achieved during NMV at 12 months.

Keywords: chronic respiratory failure; mechanical ventilation; sleep; nocturnal ventilation

Chronic respiratory failure (CRF) is associated with nocturnal hypoventilation and a reduction in sleep quality. Non-invasive mechanical ventilation (NMV), usually performed overnight, relieves the symptoms of hypoventilation and improves daytime blood gas tensions in patients with CRF. The purpose of this study was to determine the benefit of long term NMV with respect to sleep quality and breathing, both during withdrawal and application of NMV, in patients with CRF due to restrictive chest wall disorders. We performed a prospective study to evaluate the hypothesis that, after a withdrawal period of one night, there is progressive improvement in sleep quality and spontaneous breathing during sleep six and 12 months after initiation of the NMV.

Methods

PATIENTS

The protocol was approved by our ethical review committee and written informed consent was obtained from all participants. The inclusion criteria were stable chronic hypercapnic respiratory failure (Pco2 >6.0 kPa and <8.7 kPa) due to restrictive thoracic diseases (post-tuberculosis sequelae and idiopathic scoliosis).

In all patients there was no significant difference between two blood gas measurements taken one week apart, immediately before admission to hospital, indicating that the CRF was stable. Furthermore, an increased bicarbonate level represented a partially or completely compensated respiratory acidoses. The criterion for the introduction of NMV in these patients was the development of symptoms of nocturnal hypoventilation such as reduced mobility, increased dyspnoea during exercise, daytime sleepiness, or headache.

Exclusion criteria were sleep apnoea, obesity hypoventilation syndrome, chronic obstructive pulmonary disease (COPD), decompenated cor pulmonale, neuromuscular diseases, acute respiratory failure (requiring continuous mechanical ventilation), and severe acidosis (defined as pH<7.3). Fifteen consecutive patients referred to our hospital for NMV were recruited to the study. The type of ventilator, diagnoses, anthropometric data, and lung function data are presented in table 1.
Effect of non-invasive mechanical ventilation on sleep in patients with CRF

Table 1 Diagnoses, ventilation modes, anthropometric and lung function parameters of the investigated population

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scoliosis (n)</td>
<td>11</td>
</tr>
<tr>
<td>Post-TBC (n)</td>
<td>10</td>
</tr>
<tr>
<td>PCV (n)</td>
<td>5</td>
</tr>
<tr>
<td>VCV (n)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n)</td>
<td>13</td>
</tr>
<tr>
<td>Female (n)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (cm)</td>
<td>173.4 (12.3)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>70.5 (9.5)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>57.9 (12.0)</td>
</tr>
<tr>
<td>VC (l)</td>
<td>1.1 (0.3)</td>
</tr>
<tr>
<td>VC (% pred)</td>
<td>75.1 (8.4)</td>
</tr>
<tr>
<td>FEV1 (l)</td>
<td>0.8 (0.2)</td>
</tr>
<tr>
<td>FEV1 (% pred)</td>
<td>72.2 (9.7)</td>
</tr>
</tbody>
</table>

VCV = volume cycled ventilation; PCV = pressure cycled ventilator; post-TBC = post-tuberculosis sequelae; VC = vital capacity; FEV1 = forced expiratory volume in one second.

Values are mean (SD).

MEASUREMENTS
Baseline measurements were performed prior to the run in period of NMV, the normal values for lung function data being those of the European Respiratory Society. Vital capacity (VC), forced expiratory volume in one second (FEV1), and total lung capacity (TLC) were measured using a whole body plethysmography (Masterlap, Jäger, Würzburg, Germany). Resting daytime arterial capillary blood gas tensions were measured from the hyperaemic ear lobe whilst breathing room air. The measurements were taken during spontaneous breathing between 08.00 and 10.00 hours. After adaptation, blood gas tensions were assessed breathing room air during NMV. During sleep, transcutaneous measurements of oxygen saturation (SaO2) were made using a pulse oximeter (Pulsoxy X, AVL, Bad Homburg, Germany). All signals were transferred from the analogue output via an analogue-to-digital converter. After the signals were digitized they were processed by computer into software, analysed, and recorded.

Standard polysomnographic recordings were performed with an Edit-sleep (MAP, Martinsried, Germany) and the polygraphic recording with Poly-MESAM (MAP, Martinsried, Germany). Standard polysomnographic recordings consisted of two electroencephalographic (EEG) derivations (C4-A1 and C3-A2), electro-oculography (EOG), electromyography (EMG) of the submental and tibialis anterior muscles, and electrocardiography (ECG, modified V2 lead). Respiration was monitored using oronasal thermistors and thoracic and abdominal movements with inductive plethysmography. Body position and oxygen saturation using finger pulse oximetry were also recorded. Sleep was hand scored in 30 seconds epochs according to the criteria of Rechtschaffen and Kales. We determined sleep efficiency as the total sleep time (TST) divided by the total time in bed (TIB). Sleep latency was defined as the time from the start of the study (lights off) to sleep onset. A transient desaturation was defined by a decrease in SaO2 of 4% or more lasting at least 10 seconds before returning to baseline. Awakenings (respiratory arousals) were defined as the combination of arousals associated with transient desaturations (compared to the preceding two minute period). Arousals were scored according to the American Sleep Disorders Association. The mean oxygen saturation (mSaO2) and the lowest oxygen desaturation (nadir SaO2) in both REM and NREM sleep were determined. All patients were under direct video observation during the recordings.

STUDY DESIGN
In a prospective study design 15 consecutive patients with CRF due to thoracic restriction were recruited. To avoid “first night effect” at baseline, actual monitoring nights were preceded by one in-laboratory adaptation night with polygraphic recording equipment. Baseline polysomnographic in-laboratory recordings were obtained from all subjects before the initiation of NMV. The follow up polysomnographic in-laboratory recordings during spontaneous breathing (withdrawing NMV) were repeated six months (T6) and 12 months (T12–) after initiation NMV. At the 12 month investigation a second polysomnographic recording was performed with NMV (T12+).

All patients had a run in period of NMV of five days to determine the optimal ventilator settings. Initially all patients underwent volume cycled ventilation (VCV). If, after two days, patients felt uncomfortable with VCV, it was replaced by pressure cycled ventilation (PCV). Further details with respect to the adaptation to both VCV and PCV have been described elsewhere. For VCV, PLV 100 (Lifecare, Denver, Colorado, USA) and for PCV, Bilevel Positive Pressure Ventilation (“BiPAP-ST”, Respironics Inc, Murrysville, Pennsylvania, USA) were used. The efficacy of NMV was established by a reduction in PCO2 from 5.7 kPa during the five day adaptation period.

During the adaptation period patients were instructed in the use of the interface fit. All patients were initially ventilated via a conventional nose mask (Respironics, Murrysville, USA; and Res-care, Sydney, Australia). If pressure sores developed or if the quality of ventilation deteriorated due to leakage from the mask or the mouth, an individual nose or nose-mouth mask was made by a dental laboratory. Blood gas tensions and pulmonary function were measured at baseline and at T6 and T12. All measurements were performed on room air. Patients’ compliance with NMV was assessed by analysis of the ventilator time clock at T6.
and T12, allowing calculation of the average daily rate of use.

ANALYSIS OF DATA

The results are expressed as mean (SD) or as the mean difference with 95% CI (absolute or in percentage of baseline). For the three measurements of blood gas tensions, lung function, and polysomnographic trials (baseline, T6, and T12) analysis of variance (ANOVA) for repeated measurements was used as a global test (p <0.05 was considered significant). The global test was followed by pairwise comparisons. Since the null hypothesis of normality is rejected for some differences (Shapiro-Wilk test, level 0.10) and the test of normality does not have much power (small sample size), the results of both parametric (95% confidence interval for the mean value of differences) and non-parametric approaches (p value of Wilcoxon signed rank statistic) are given as sensitivity analysis.

Results

During the period of the study all consecutive patients referred with CRF were considered; six were ineligible due to exclusion criteria but 15 were enrolled, all of whom finished the study. In 10 patients PCV was prescribed and five patients were prescribed VCV. The ventilator settings and blood gas tensions during NMV after the adaptation period (without supplemental oxygen) are presented in table 2. As evidenced by a reduction in Pco2 during NMV, patients received efficient ventilatory support. No patient required oxygen therapy to maintain Po2 at >8 kPa and body weight did not change by more than 10% during the observation period.

Analysis of ventilator compliance revealed no differences between the rate of daily use at T6 and T12 (7.0 (1.4) and 6.9 (1.4) hours/day, respectively). There was therefore no correlation between compliance with NMV and the degree of improved sleep quality.

Before NMV all patients had CRF with daytime hypcapnia and hypoxaemia: pH, vital capacity (VC) and forced expiratory volume in one second (FEV1) were reduced and HCO3– was increased in comparison with published normal values (table 3). At both T6 and T12 the following parameters, measured during daytime spontaneous breathing, showed significant improvement compared with baseline values (tables 3 and 4): Pco2 and HCO3– decreased by 22.5% (95% CI 26.0 to 18.9) and 17.4% (95% CI 24.2 to 10.6), respectively; simultaneously Po2 increased by 34.0% (95% CI 23.0 to 45.0), confirming the efficacy of the treatment. There was no relevant change in lung function.

In the pretreatment study significant nocturnal hypoventilation (nadir and mSaO2) was found in the whole group. When spontaneous breathing during sleep at baseline was compared with T6 and T12– a progressive improvement was found (tables 5 and 6, fig 1). Accordingly, from baseline to T12– mSaO2 decreased by 21.5% (95% CI 12.4 to 30.6) and 24.9% (95% CI 12.9 to 36.9) during NREM and REM sleep, respectively.

The lowest mSaO2 and nadir SaO2 occurred during NREM sleep at baseline was compared with T6 and T12– a progressive improvement was found (tables 5 and 6, fig 1). Accordingly, from baseline to T12– mSaO2 decreased by 21.5% (95% CI 12.4 to 30.6) and 24.9% (95% CI 12.9 to 36.9) during NREM and REM sleep, respectively.
Table 6 Mean differences with 95% confidence intervals (CI) of sleep stages, mean and nadir oxygen saturation between T6 and baseline, T12 and T6, T12+ and T12−.

<table>
<thead>
<tr>
<th></th>
<th>T6 − baseline</th>
<th>T12 − T6</th>
<th>T12+ − T12−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean SaO2-NREM (%)</td>
<td>9.3 (5.6 to 13.1)</td>
<td>*** 5.3 (3.1 to 7.4)</td>
<td>*** 3.9 (2.4 to 5.3)</td>
</tr>
<tr>
<td>Mean SaO2-REM (%)</td>
<td>8.8 (5.1 to 12.6)</td>
<td>*** 5.3 (3.0 to 7.6)</td>
<td>*** 3.3 (1.8 to 4.7)</td>
</tr>
<tr>
<td>Nadir SaO2-NREM (%)</td>
<td>8.9 (3.5 to 14.3)</td>
<td>*** 9.7 (5.0 to 14.3)</td>
<td>** 6.7 (4.0 to 9.5)</td>
</tr>
<tr>
<td>Nadir SaO2-REM (%)</td>
<td>10.9 (7.7 to 16.1)</td>
<td>*** 9.3 (5.8 to 12.7)</td>
<td>*** 9.3 (4.8 to 13.7)</td>
</tr>
<tr>
<td>Awakenings (1/h)</td>
<td>−10.0 (−15.1 to −4.9)</td>
<td>***# −7.1 (−14.4 to 0.2)</td>
<td>***# −6.3 (−10.7 to −1.8)</td>
</tr>
<tr>
<td>TST (min)</td>
<td>38.0 (22.1 to 53.9)</td>
<td>*** 10.2 (−10.9 to 31.6)</td>
<td>NS 15.9 (7.6 to 24.3)</td>
</tr>
<tr>
<td>SL (min)</td>
<td>1.1 (−7.3 to 9.6)</td>
<td>NS 5.5 (−12.2 to 12.1)</td>
<td>NS 9.3 (−17.9 to −1.0)</td>
</tr>
<tr>
<td>PE (%)</td>
<td>9.4 (5.0 to 13.7)</td>
<td>*** 0.1 (−5.7 to 5.9)</td>
<td>*** 7.8 (4.0 to 11.0)</td>
</tr>
<tr>
<td>REM (% TST)</td>
<td>3.3 (−0.1 to 6.7)</td>
<td># 1.9 (−0.1 to 3.9)</td>
<td># 3.9 (2.0 to 5.8)</td>
</tr>
<tr>
<td>REM-L (min)</td>
<td>−22.3 (−39.6 to 15.0)</td>
<td>NS 5.1 (−8.4 to 18.6)</td>
<td>NSSarah (−19.8 to 10.6)</td>
</tr>
<tr>
<td>NREM 1 & 2 (% TST)</td>
<td>−5.2 (−10.8 to 0.3)</td>
<td>* −7.1 (−13.3 to −2.9)</td>
<td>***# −6.9 (−10.9 to −2.8)</td>
</tr>
<tr>
<td>NREM 3 & 4 (% TST)</td>
<td>2.2 (−2.9 to 6.4)</td>
<td>NS 5.4 (1.1 to 9.7)</td>
<td>** 2.6 (−0.7 to 6.0)</td>
</tr>
</tbody>
</table>

NS = not significant; *p<0.05; **p<0.01; ***p<0.001; #null hypothesis of normality rejected on a level of 0.10.

For definition of abbreviations see table 5.

Discussion

The main findings of this study were that both spontaneous nocturnal ventilation and sleep quality progressively improved with NMV in patients with thoracic restriction, measured by withdrawing NMV for one night at six (T6) and 12 months (T12−) after initiation of NMV. However, a mild degree of hypoventilation remained apparent during the withdrawal studies, especially during REM sleep. Along with ventilation, the greatest improvement in sleep quality was achieved during the intervention itself (T12+). To the best of our knowledge this is the first study to investigate spontaneous breathing and sleep quality after long term NMV, performing repeated measurements in patients with CRF due to thoracic restriction.

The study does, however, have several limitations. Firstly, the absence of a control group is a significant limitation but, because of ethical considerations, a control group without NMV was not considered acceptable. Furthermore, such a design would require the enrollment of a large number of patients to ensure equal distribution and such a study would probably not be realistic for a single institution.

Secondly, no neuropsychological measurements were performed in this study. In particular, quality of life and vigilance were not investigated. Due to the physiological character of the study we focused exclusively on the given parameters. However, using different questionnaires in heterogeneous populations it has recently been shown that NMV leads to an improvement in the quality of life.13–15

Thirdly, no direct parameter of nocturnal ventilation such as transcutaneous CO2 (PtcCO2) was measured. Previous studies of patients with chest wall disorders have shown that the decrease in SaO2 and increase in PtcCO2 associated with hypoventilation are inextricably linked.10 14 17 In our study population the documented nocturnal decrease in SaO2 is therefore sufficient evidence of hypoventilation during
sleeper; conversely, the increase in nocturnal
\(\text{SaO}_2\) represents an improvement in ventilation.

Finally, one could question whether, during
the four sleep studies, a gradual aclimatisation
to the sleep laboratory may have affected the
sleep quality. However, in order to avoid a “first
night effect” the study was designed to include
an in-laboratory adaptation night with a
polygraphic recording before the baseline full
polysomnography. The mean and nadir oxygen
saturation of these studies did not show any
statistical difference. It therefore seems unlikely
that adaptation phenomena influenced the results.

In this study the most significant improve-
ment in ventilation and sleep quality was
achieved during NMV. However, during NMV,
periods of hypventilation still occurred. The
main cause of these hypopneas during NMV,
as has been previously shown, were episodes of
mouth leakage. Other factors may be respon-
sible for hypopneas during NMV—for exam-
ple, it has recently been shown that volume
cycled ventilation in control mode may induce
reduction of effective ventilation by glottic
closure. However, it was not the aim of this
study to investigate the relevance of mouth
leakage and glottis closure on ventilation and
sleep quality. Although NMV was not an end point
of the two different ventilation modes
being used, it was noted that two thirds of the
population preferred PCV. The blood gas ten-
sions during NMV and daytime revealed no
differences between the two groups.

Previous withdrawal studies have also inves-
tigated the effect of NMV on sleep and noctur-
nal breathing in patients with CRF after initia-
tion of NMV. Piper and Sullivan investigated 14
patients with CRF due to neuromuscular and
chest wall disorders after NMV for at least
six months. It was found that, after a single
night of withdrawal from NMV, spontaneous
breathing during sleep, although still abnor-
mal, had markedly improved. The most signifi-
cant hypventilation was apparent during
REM sleep. Goldstein et al investigated
three patients after eight weeks of treatment with
negative pressure ventilation and found that, as
judged by \(\text{SaO}_2\) and \(\text{CO}_2\), spontaneous ventila-
tion during a withdrawal trial was better than the
pretreatment values but worse than those
recorded during NMV.

Although not investigated in this study, it would not be expec- ted that a one night withdrawal of NMV would induce a relevant deterioration in clinical condition, heart func-
tion, and daytime ventilation. We therefore
postulate a carry over effect from the long term
NMV into the withdrawal night, despite the
deterioration in both nocturnal ventilation and
sleep quality in the studies at T6 and T12.
Neither the study design nor the findings aim
to suggest discontinuing NMV, apart from for
scientific investigations.

Longer periods of withdrawal of NMV have
been shown to induce clinical deterioration in
other studies. Gas exchange deteriorated
and daytime symptoms recurred after a two
week withdrawal of negative pressure ventila-
tion in a patient who had been using NMV for
12 months. Two further studies involving
withdrawal of positive pressure ventilation for
7–15 days also found deterioration of sleep
quality, clinical condition, and/or gas exchange.

The findings of improved sleep quality and
ventilation during NMV in this study are in line
with previous studies. In patients with COPD an
improvement in sleep quality and nocturnal
ventilation was found after three months of
NMV. In patients with neuromuscular dis-
cases long term NMV improved both noctur-
nal ventilation and sleep quality, and in
patients with chest wall diseases without estab-
lished CRF during the daytime (but mild noctur-
nal hypventilation) NMV improved noctur-
nal ventilation but not sleep quality after 15
days of NMV.

The rationale for the progressive improve-
ment in spontaneous nocturnal ventilation and
sleep quality during the one year observation
period remains speculative. There may be sev-
eral explanations for these findings—for exam-
ple, increased adaptation to the NMV and
interface or slowly improving neurophysiologi-
ical phenomena. It was not the aim of this study
to favour one of the two main hypotheses of how NMV works (respiratory muscle rest
and/or resetting the chemosensitivity). We
acknowledge that these data are not provided
by this present study and hence the mechanism
by which improvement occurs remains un-
known.

Two specific issues that arise from the results
of this study should be discussed. It is generally
agreed that spontaneous ventilation is worst
during sleep in CRF. This may result partly from lung mechanics in the supine
position, pathological breathing pattern,
and reduced chemosensitivity during REM
sleep. However, the diaphragm is essential for
ventilation in REM sleep since in REM sleep
a marked reduction in intercostal muscle activ-
ity is found. During NREM sleep there is an
increased contribution of the rib cage to
breathing so it may be postulated that a progressive improvement in inspiratory muscle
function is the main cause of increased ventila-
tion during both REM and NREM sleep.

Other studies of patients with neuromuscular
diseases or chest wall disorders have concluded that the correction of sleep disor-
dered breathing and the associated arousal
responses are the main mechanisms for the
beneficial effects of NMV. However, in a
previous study we found that daytime NMV in
awake patients with CRF also leads to an
improvement in both spontaneous daytime and
nighttime ventilation without direct treatment
of the associated sleep disordered breathing
itself. These findings imply that improvement
obtained with daytime NMV is not directly
mediated by an effect on sleep quality, and
suggest that NMV does not exclusively need to
be directed at what is functionally the worst
period of hypventilation. CRF may therefore
be at least partially reversed without primarily
preventing sleep disordered breathing.
We conclude from the results of this study that single night withdrawal of NIV six and 12 months after initiation of nocturnal NIV produces both spontaneous ventilation during sleep and progressive improvement in sleep quality compared with baseline in patients with CRF due to thoracic restriction. However, the greatest improvements in quality of nocturnal ventilation and sleep were still achieved during nocturnal NIV.

The authors thank M Polkey and P Turking for their critical remarks and linguistic advice and Chr Heinrich-Ihlberl for her statistical advice. We are grateful to K Krause for the excellent technical assistance in the sleep laboratory and A Simon for analysis of the polysomnographic trials.