Appetite suppressants and pulmonary hypertension

N F Voelkel
Pulmonary Hypertension Center, University of Colorado Health Sciences Center, Denver, Colorado, USA

Introductory article

Appetite-suppressant drugs and the risk of primary pulmonary hypertension

L Abenhaim, Y Moride, F Brenot, S Rich, J Binichou, X Kurz, T Higenbottam, C Oakley, E Wouters, M Aubier, G Simonneau, B Begaud for the International Primary Pulmonary Hypertension Study Group

Introduction

Appetite-suppressant drugs and the risk of primary pulmonary hypertension

L Abenhaim, Y Moride, F Brenot, S Rich, J Binichou, X Kurz, T Higenbottam, C Oakley, E Wouters, M Aubier, G Simonneau, B Begaud

Background. Recently in France, primary pulmonary hypertension developed in a cluster of patients exposed to derivatives of fenfluramine in appetite suppressants (anorexic agents), which are used for weight control. We investigated the potential role of anorexic agents and other suspected risk factors for primary pulmonary hypertension. Methods. In a case-control study, we assessed 95 patients with primary pulmonary hypertension from 35 centers in France, Belgium, the United Kingdom, and the Netherlands and 355 controls recruited from general practices and matched to the patients' sex and age. Results. The use of anorexic drugs (mainly derivatives of fenfluramine) was associated with an increased risk of primary pulmonary hypertension (odds ratio with any anorexic-drug use, 6.3; 95 percent confidence interval, 3.0 to 13.2). For the use of anorexic agents in the preceding year, the odds ratio was 10.1 (95 percent confidence interval, 3.4 to 29.9). When anorexic drugs were used for a total of more than three months, the odds ratio was 23.1 (95 percent confidence interval, 6.9 to 77.7). We also confirmed an association with several previously identified risk factors: a family history of pulmonary hypertension, infection with the human immunodeficiency virus, cirrhosis, and use of cocaine or intravenous drugs. Conclusions. The use of anorexic drugs was associated with the development of primary pulmonary hypertension. Active surveillance for this disease should be considered, particularly since the use of anorexic drugs is expected to increase in the near future.
been isolated case reports which strongly indicated that anorexigen intake can be associated causally with PPH. Usually such association can be claimed when a patient develops unexplained pulmonary hypertension in close temporal relation to anorexigen use and when no other drugs are involved. Analysis of the data collected for the primary pulmonary hypertension registry of the US National Institutes of Health showed that 5% of the patients with PPH had a history of anorexigen use, and Brenot et al. found that, among their 125 cases of PPH, 14% had a history of anorexigen use (25% of all their female patients). Based on these data, it is not likely that anorexigen use is currently the overwhelming cause of PPH, but if anorexigen use continues to increase, it is likely to become an increasingly important cause of PPH.

For the prospective International Primary Pulmonary Hypertension Study (IPPHS) Group, 35 centers in France, Belgium, the Netherlands, and the UK agreed to participate and to report cases of PPH diagnosed between September 1992 and September 1994. A total of 95 patients with PPH were identified, 64 of whom had been reported by French centers. Definite use of anorexigens had been reported by 30 of the 95 patients with PPH but by only 26 of 335 controls. Although the study was international in design, the data largely represented the French experience. Perhaps the most striking finding of the IPPHS was that roughly 12% of the patients with PPH had taken anorexigen for 12 months or longer (compared with 0.6% in the control group).

Anorexigen and PPH: the historical context

Several medical centers in Switzerland, Austria, and Germany registered an increased incidence of severe pulmonary hypertension beginning in 1967. Roughly 18 months after the anorexigen Mencol (aminorex fumarate) had been released in these three countries, by 1970 150 cases of PPH associated with anorexigen use had been reported. The 1985 review by Gurtner concluded that altogether 582 cases of anorexigen-induced PPH had been reported. The early experience with this epidemic in Vienna (fig 1) illustrates the latency period between the time of introduction of the drug and the time when an increased incidence of PPH was recognized (the drug had been released in December 1965). Although the drug was taken off the market in November 1968, cases of anorexigen-induced PPH were diagnosed for several years. Symptoms consistent with PPH occurred 9–14 months after the start of the anorexigen treatment, approximately one per 10,000 anorexigen users developed PPH, and the lesions of anorexigen-induced PPH were histologically indistinguishable from those recognized in sporadic cases of PPH. Since the aminorex epidemic, sporadic cases of PPH were conducted many months after the anorexigen intake. Attempts to induce pulmonary hypertension by feeding aminorex to rodents, dogs, and cattle failed, which would not be surprising if there is a specific human genetic susceptibility. The retrospective data analysis of the aminorex epidemic also showed that approximately 10% of the patients with PPH had used anorexigen in combination with chlorphenetermine, phenmetrazine, or amphetamine.

Since the aminorex epidemic, sporadic cases of PPH related to the use of fenfluramine or phenelzine have been reported.

Anorexigen-associated pulmonary hypertension: the pharmacological context

The exact pathogenic events leading to the manifestation of PPH are still unknown. It appears, however, that for the anorexigen-associated cases of PPH, 5-hydroxytryptamine (5-HT, serotonin) might be a common denominator. Figure 2 shows the structures of some of the anorexigenes, including anorexigen, and also the frequently used antidepressant agents such as sertraline hydrochloride and fluoxetine hydrochloride. All of these agents release 5-HT from storage sites or inhibit uptake of 5-HT, or both. Although anorexigen resembles amphetamine and has been shown to release noradrenaline (norepinephrine), anorexigen also releases 5-HT. Gahl and coworkers found no increase in levels of metabolites of 5-HT in the urine of patients with anorexigen-induced PPH. However, these measurements were conducted many months after the anorexigen intake. Nevertheless, a unifying hypothesis operating with a 5-HT paradigm may be justified at the present time. If ever and coworkers reported the case history of a patient with PPH and a platelet storage disorder and, more recently, described the plasma 5-HT levels in patients with PPH, of great interest is their finding that, in their patients with PPH (some of whom had taken anorexigen), there was an increase in plasma 5-HT levels and an increased release of 5-HT from the platelets. Moreover, this increase in plasma levels of 5-
Appetite suppressants and pulmonary hypertension

Phentermine hydrochloride

Amphetamine

Aminorex

Dexfenfluramine hydrochloride

Sertraline hydrochloride

Fluoxetine hydrochloride

Figure 2. Chemical structures of 5-hydroxytryptamine (5-HT, serotonin) and 5-HT-releasing appetite suppressants or antidepressants.

HT persisted in those patients who had received lung transplantation. If this finding of raised levels of 5-HT in patients with PPH can be confirmed in other populations with PPH, it would be tempting to speculate that agents which alter the metabolism of 5-HT could be trigger factors for PPH (figs 3 and 4). It is clear from experimental data that 5-HT does, indeed, cause pulmonary vasoconstriction and produces both hyperplasia and hypertrophy of isolated cultured pulmonary artery smooth muscle cells. The proliferative effect of 5-HT is apparently transduced through the 5-HT2 receptor. However, the relationship between alteration in 5-HT metabolism and PPH is probably more complex, as evidenced by the absence of reports of a relationship between the chronic intake of antidepressants such as fluoxetine hydrochloride (a very widely used drug) and PPH. However, in our centre we have recently diagnosed PPH in a woman who had not taken anorexigens but had been treated for her depression with sertraline hydrochloride (unpublished observation).

HT persists in those patients who had received lung transplantation. If this finding of raised levels of 5-HT in patients with PPH can be confirmed in other populations with PPH, it would be tempting to speculate that agents which alter the metabolism of 5-HT could be trigger factors for PPH (figs 3 and 4). It is clear from experimental data that 5-HT does, indeed, cause pulmonary vasoconstriction and produces both hyperplasia and hypertrophy of isolated cultured pulmonary artery smooth muscle cells. The proliferative effect of 5-HT is apparently transduced through the 5-HT2 receptor. However, the relationship between alteration in 5-HT metabolism and PPH is probably more complex, as evidenced by the absence of reports of a relationship between the chronic intake of antidepressants such as fluoxetine hydrochloride (a very widely used drug) and PPH. However, in our centre we have recently diagnosed PPH in a woman who had not taken anorexigens but had been treated for her depression with sertraline hydrochloride (unpublished observation).

Figure 3. Scheme depicting the confluence of a presently ill described genetic disposition and trigger factors in the development of primary pulmonary hypertension. It is clear that the trigger factors are of a vastly varied nature, including high blood flow or increased shear stress, viral infections, and anorexigens.

Figure 4. Scheme depicting a hypothetical sequence of events involving appetite suppressants which alter the metabolism of 5-hydroxytryptamine (5-HT) or affect release of 5-HT from platelets and mast cells. In susceptible individuals that is those with a genetic disposition, increased levels of 5-HT could both alter pulmonary vascular tone and also affect pulmonary vascular cell growth.
LEARNING POINTS

- Appetite suppressants which affect the release or uptake of 5-HT (serotonin) may be trigger factors for primary pulmonary hypertension (PPH) in a genetically susceptible segment of the general population.
- Primary pulmonary hypertension is a generally fatal disease of young women, a group more likely to take appetite suppressants than men.
- There may or may not be an association between obesity itself and the development of PPH but PPH does occur in non-morbidly obese users of appetite suppressants.
- Development of dyspnoea, fatigue and cough in anorexigen users (particularly when these symptoms occur in spite of weight loss) is a reason for alarm and should trigger investigation for pulmonary hypertension.

Anorexigen-associated pulmonary hypertension and obesity: risk-benefit ratio

It should be clear from the above that anorexigen can cause pulmonary hypertension. It should also be appreciated that many patients are looking for a pharmacological solution to their obesity problem. In the USA dieting and weight management are a multibillion dollar industry. Hundreds of new diet pill clinics have opened during the last year. Presently we have no good understanding of the relationship between body weight and pulmonary hypertension – apart from the well known association of the obesity/hypoverilation/poly-cythaemia syndrome and pulmonary hypertension.

Gurtner, summarising his experience of 71 patients with presumed anorexigen-induced PPH, found that 50% of the patients had used aminorex while being only mildly overweight (110% of ideal body weight). While anywhere from 400 to 1000 additional new cases of PPH per year have been reported, the number of anorexigen users in the USA approaches 20 million, we may soon witness a much higher than that about 36% of the 95 patients with PPH had a body mass index of > 30 compared with only 18.3% in the control group (the controls having been matched with the cases for age and sex only). The difference is probably explained by obese women being more likely to use anorexigen and the authors concluded that the effect of anorexige on PPH was the same whether the patients had a high body mass index or not.

However, obese patients are not as frequently depressed and they may also be hypoxaemic; it is not known whether hypoxaemia or the concomitant use of antidepressants in anorexigen users poses an increased risk for PPH. Experiments in dogs have shown an increase in pulmonary vascular resistance with a combination of hypoxaemia and dexfenfluramine administration.

In 1996 about 10 million prescriptions for fenfluramine (total sales $190 million in 1996), and approximately 2.5 million prescriptions for dexfenfluramine were written in the USA. Whereas the profit margins for the diet pill clinics are apparently greater than those in the restaurant business, little concern is being expressed about the prospects of successful long term weight loss. Little is known from clinical studies about the efficacy of any of the currently prescribed anorexigen, but Weight Watchers International has advised that “people will take the drug for as long as they need to achieve their weight loss goal and they should continue to take the drug to maintain their weight loss” (May 1996).

All this is worrisome when one considers that the pharmaceutical industry does not generally screen new compounds for their potential to cause pulmonary hypertension. By contrast, drugs do not usually reach the market if they raise the systemic blood pressure. Given the uncertainty of currently available “diet pills” to cause successful long term weight loss and the risk of developing a lethal disease, the risk-benefit ratio could be considered unacceptable high. The introductory article has lessened previous uncertainty and, as the number of anorexigen users in the USA approaches 20 million, we may soon witness a much greater incidence of PPH in that country as in Europe, anywhere from 400 to 1000 additional new cases of PPH per year.

Appetite suppressants and pulmonary hypertension

20 Gahl K, Greiser E. Erfahrungen einer klinisch-epidemiologischen stu-
21 Greiser E. Epidemiologische Untersuchungen zum Zusammenhang
22 Kraupp VU. Transepidermalenuntersuchungen zur Diagnose der
acids and chronic effects on pulmonary and systemic hemodynamics
24 Lekkli, Panaos HS. Salter M, Saller KU. Supraneuroend A. The
effects of anorectic agents on the pulmonary pressure and morphology
of rat lung after chronic administration. Schweiz Med Wochenschr
25 Byrne-Quinn E, Grover RF. Aminorex (Menocil) and amphetamine: induced
mitogenesis and tyrosine phosphorylation of smooth muscle
26 Voelkel NF, Clarke WR, Higenbottam T. Obesity, dexfen¬
ramine, and pulmonary hypertension in dogs. Am J Respir Crit Care
27 Herve P, Drouet L, Droquet C, Launay J-M, Rain B, Simonneau G,
et al. Primary pulmonary hypertension in a patient with a familial
28 McGougan MD, Vanhoutte PM. Aggregating platelet contract
isolated canine pulmonary arteries by releasing 5-hydroxytryptamine. J Clin
Invest 1984; 73:629–33.
29 Lee S-L, Wang WW, Lanzillo JJ, Fanburg BL. Serotonin produces both
increased DNA synthesis in rat proximal and distal pulmonary vascular
smooth muscle cells in culture. Am J Physiol 270 (Lung Cell Mol Physiol
30 Pitt BR, Weng W, Steve AR, Blakely RD, Reynolds I, Davies P. Serotonin
increased DNA synthesis in rat proximal and distal pulmonary vascular
smooth muscle cells in culture. Am J Physiol 270 (Lung Cell Mol Physiol
increased DNA synthesis in rat proximal and distal pulmonary vascular
smooth muscle cells in culture. Am J Physiol 270 (Lung Cell Mol Physiol
32 Abenhaim L, Chol S, Banchou J, Begaud B. Letter to the editor. N
33 Abenhaim L, Wealdy P, Magagnorina M, Lemoen N, DaCruz M. Effects of
dexfen¬
ramine on hepatic pulmonary vasodilatation and embolic
pulmonary hypertension in dogs. Am J Respir Crit Care Med 1995;
34 National Task Force on the Prevention and Treatment of Obesity. Long term
35 Weidt N. Drug-induced pulmonary hypertension: must history repeat