Should patients with cystic fibrosis infected with *Burkholderia cepacia* undergo lung transplantation?

A K Webb, J Egan

A medical issue currently causing much discussion in cystic fibrosis centres and transplant units is the concern that patients with cystic fibrosis colonised with *Burkholderia cepacia* may have a poor outcome following transplantation. As the supply of donor organs continues to decline, the question arises as to whether these patients should be excluded from transplantation. Is there sufficient clinical and scientific information to reach a decision to exclude this group of patients from lung transplantation, which offers increased survival? Are there any solutions? Is such a decision ethically correct? Many issues need to be carefully addressed before such a finite conclusion is reached.

Burkholderia cepacia, previously recognised as a plant pathogen (Latin *cepia* = onion), emerged in the early 1980s as a human pathogen. It has a particular predisposition to infect patients with cystic fibrosis. Infection with *B cepacia* is distinguished from infection with other major cystic fibrosis pathogens such as *Pseudomonas aeruginosa* by accelerated lung disease in some patients with mild to moderate lung disease. Overwhelming septicemia and necrotising pneumonia due to *B cepacia* are well described, events which are extremely rare with *P aeruginosa* infection. The precise reasons for the increased virulence of *B cepacia* have been investigated but not identified, but many isolates exhibit intrinsic multiple resistance to all available antibiotics.

It is important to know the current number of paediatric and adult patients infected with *B cepacia* in the UK, Europe, and North America. Pitt *et al* recently identified 178 patients with cystic fibrosis in 17 paediatric and adult cystic fibrosis centres in the UK who harboured *B cepacia*. The United States Cystic Fibrosis Foundation registry reported in 1994 identified 538 patients (3.2%) growing *B cepacia*. A current epidemiological survey has identified 221 (6%) *B cepacia* positive patients in the UK and 333 (5%) *B cepacia* positive patients in Europe. Worldwide there is therefore a small but significant number of patients infected with *B cepacia* who potentially will need a transplant.

Although the numbers of patients with cystic fibrosis infected with *B cepacia* are relatively small, the current prevalence is likely to persist. Epidemiological studies using bacteriocin typing, multilocus enzyme electrophoresis, PCR ribotyping, and pulsed-field gel electrophoresis have shown that *B cepacia* may be highly transmissible between patients. Cross infection occurs usually by direct person-to-person spread; a third party source is uncommon. Some strains may be more transmissible than others. An epidemic strain is described with novel cable pili which bind to cystic fibrosis mucus and epithelial cell receptors. The incidence of *B cepacia* is now declining as a consequence of strict segregation policies in cystic fibrosis centres in North America and the UK. Although some centres have described the end of their epidemic, segregation strategies have not completely eliminated acquisition because transmission still occurs between *B cepacia* positive and negative patients who congregate socially. Outbreaks are also described in cystic fibrosis centres which have not yet adopted a segregation policy.

Demand for donor organs currently exceeds a decreasing supply and a third of all patients with cystic fibrosis listed for transplantation die on the waiting list. Death rates from road traffic accidents and intracranial haemorrhage have decreased because of active strategies to resolve these problems. The donor pool may also be reduced in countries with limited availability of intensive care beds. Great variability also exists between regions in the UK for rates of lung donation – for example, in 1994 there were 7.1 cadaveric thoracic organ donations per million population (PMP) made in the North West of England compared with 9.8 PMP for the Northern/Yorkshire region which suggests that local factors may influence donor rates.

New approaches have been advocated to improve organ donation. Continuing education to medical and nursing staff on the beneficial aspects of transplantation is crucial to increase limited organ donation. In Spain there has been a 40% increase in the rate of organ donation on the basis of constructing a widespread coordination network which focuses on donor detection rather than only concentrating on retrieval. Emphasis on skilled family communication and the use of donor management protocols at an early stage have been advocated. The limited supply of organ donation has resulted in Starnes *et al* pioneering lung donation from living relatives to patients. This strategy may be helpful for patients with cystic fibrosis who are young and who have youthful relatives as potential donors.

What is the prognosis of *B cepacia* infected patients following transplantation? The evidence is conflicting. Reports from a North American centre have described a mortality rate of 75% following transplantation in 15 patients with cystic fibrosis infected with *B cepacia*. However, in 50% of those patients infected with *B cepacia* the organism was identified for the first time after transplantation. This implies either the organism was not identified by appropriate microbiological techniques prior to transplantation or the organism was acquired following transplant surgery. Following transplantation patients are vulnerable to nosocomial infections. Spread of *B cepacia* in non-cystic fibrosis immunocompromised patients is well recognised. In contrast, two subsequent reports – one from North America and one from the UK – found no excess mortality following transplantation in those patients infected with *B cepacia*. In a report from the UK the combined data from three separate transplant programmes did not find a greater mortality in 14 patients colonised with *B cepacia*. In a report from North Carolina 12 *B cepacia* positive patients had a similar outcome to other transplanted patients.

It is appropriate at this point to note that organisms other than *B cepacia* may potentially affect clinical outcome following transplantation. These organisms can include multiple resistant pseudomonads, methicillin resistant staphylococcus (MRSA), *Aspergillus fumigatus*, *Xanthomonas maltophilia*, and *B gladioli*. Two recent studies have shown that the presence of these resistant organisms in patients with cystic fibrosis before transplantation does not predict a worse outcome following transplantation than...
for patients infected with sensitive organisms.5,26 It is crucial that these patients are in a good nutritional state and a stable clinical state when transplanted.

Overall, patients with cystic fibrosis infected with \textit{B cepacia} are probably at greater risk of postoperative complications than \textit{P aeruginosa} infected patients. Following transplant surgery, severe infective episodes have been reported which include septicaemia, pericarditis, pneumonia, and empyemias.21 However, although some patients infected with \textit{B cepacia} may have a difficult postoperative course, prolonged survival in a reasonable number of carefully selected patients does occur when cumulative evidence is examined from different centres.22,24 Removing the lungs, the primary focus of \textit{B cepacia} infection, is the purpose of transplant surgery and in some patients \textit{B cepacia} infection has been eradicated following transplantation, although recolonisation commonly occurs from the upper airways.

In the presence of conflicting reports can we identify those \textit{B cepacia} positive patients who might do badly? This may depend upon the virulence of the organism and the host responses to this unusual opportunistic pathogen. However, very little is understood about the host-pathogen interaction which can identify “at risk” patients. Prognostic statements on the clinical consequences of colonisation are difficult; even in epidemic outbreaks when patients are colonised by the same strain, some patients may remain asymptomatic whilst others succumb to rapid fatal decline.6,13

Members of the species presently identified as \textit{B cepacia} are heterogeneous both in their genomic and phenotypic profile.20,23 One study identified more than 50 ribotype patterns in 178 patients.11 In the same study, isolates of an epidemic strain with the same genomic profile showed a very variable antibiotic susceptibility. In our unit six patients have eliminated the organism from their sputum for more than three years and another five are colonised by the same strain, some patients may remain asymptomatic whilst others succumb to rapid fatal decline.6

Identifying differing host responses in those patients infected with \textit{B cepacia} may be just as important as the virulence of the organism. A UK multicentre study has shown that the exaggerated host response, characteristic of cystic fibrosis, is greatest in the presence of infection with \textit{B cepacia}; levels of the inflammatory markers C-reactive protein and neutrophil elastase α_1-antiproteinase complex were significantly higher during \textit{B cepacia} associated exacerbations than in exacerbations due to \textit{P aeruginosa} alone.31 The lipopolysaccharide of \textit{B cepacia} can induce pro-inflammatory cytokines including tumour necrosis factor to a level 10 times greater than that induced by \textit{P aeruginosa}.

Despite the general observation that lung disease may be accelerated by infection with \textit{B cepacia}, patients with cystic fibrosis do respond to maximum multidisciplinary medical care and, in particular, to intravenous antibiotics. Peckham et al showed that, despite poorer lung function and greater in vitro antibiotic resistance, \textit{B cepacia} positive patients had as good a response as \textit{B cepacia} negative patients to intravenous antibiotics using lung function, body weight, and inflammatory markers as clinical end points.33 Aggressive antibiotic therapy can reduce inflammatory markers to pre-exacerbation levels.31

What can be done to decrease the greater risk for \textit{B cepacia} positive patients at time of transplantation? Some patients infected with \textit{B cepacia} have such rapid disease progression and are so clinically unstable with fevers and constant infection that they are unsuitable for transplantation. Following transplantation such patients are likely to develop uncontrollable sepsis in the presence of a high level of immunosuppression. However, other patients with \textit{B cepacia} infection have a slower disease progression, are well nourished, clinically stable, and their pulmonary infection is responsive to antibiotics.

There needs to be greater knowledge of what determines bacterial virulence and exaggerated host responses for the individual patient infected with \textit{B cepacia}. Perhaps \textit{B cepacia} positive patients should be listed earlier for transplantation. Patients infected with \textit{P aeruginosa} have a slower clinical progression and, at time of listing, can expect to wait up to two years for a transplant. \textit{B cepacia} positive patients may need listing earlier for transplantation with better spirometric values, nutrition, and a more stable disease state than the standard criteria used when listing a cystic fibrosis patient. Patients with cystic fibrosis may be reluctant to consider this option if their quality of life is reasonable.

Suggested measures to reduce the postoperative risk for \textit{B cepacia} positive patients might include preoperative and postoperative sinus drainage, modifying immunosuppressive protocols, and commencing aggressive intravenous antibiotic prophylaxis at the time of transplantation based upon knowledge of clinical response prior to surgery irrespective of antibiotic resistance.2

Is it ethical to exclude from transplantation a significant number of patients with cystic fibrosis infected with \textit{B cepacia}? To deny them the opportunity would be to diminish any hope of a future. Are risk factors, limited organ supply, potential postoperative problems, and health economics good enough reasons to make a decision of exclusion? Should there exist an aristocracy of the more fortunate? It can be argued on ethical grounds that health care (in this case, transplantation) requires that each patient with cystic fibrosis, irrespective of infecting organism or risk, is entitled to the opportunity of having a transplant as long as there is a chance of benefit. Against this precept is the decreasing supply of donor organs and the most effective way of using this limited resource.

These are difficult issues, but until there is unequivocal evidence of an absence of benefit for patients with \textit{B cepacia} who undergo transplantation, an equitable approach ought to be applied – that is, equal access for equal needs.

Above all, the emphasis should remain on improving donor availability rather than excluding patients from transplantation.

We are indebted to Drs A Woodcock, M Dodd, D Stableforth, J Harris, and J Govan for their robust comments in the preparation of this manuscript.

Correspondence: Dr AK Webb.

Bradbury CF Unit, North West Lung Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK

A K WEBB

J EGAN

\begin{thebibliography}{99}
\bibitem{9} Bhakta DR, Leader I, Jacobson R, Robinson-Dunn B, Honicky RE, Kumar A. Antibacterial properties of investigational, new, and commonly used
\end{thebibliography}
Lung transplantation in patients with CF infected with B. cepacia

