Lymph node staging in non-small cell lung cancer: evaluation by [18F]FDG positron emission tomography (PET)

Albrecht Guhlmann, Martin Storck, Jörg Kotzerke, Florian Moog, Ludger Sunder-Plassmann, Sven N Reske

Abstract

Background – A study was undertaken to investigate the accuracy of positron emission tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) in the thoracic lymph node staging of non-small cell lung cancer (NSCLC).

Methods – Forty-six patients with focal pulmonary tumours who underwent preoperative computed tomographic (CT) and FDG-PET scanning were evaluated retrospectively. Thirty-two patients had NSCLC and 14 patients had a benign process. The final diagnosis was established by means of histopathological examination at thoracotomy, and the nodal classification in patients with lung cancer was performed by thorough dissection of the mediastinal nodes at surgery.

Results – FDG-PET was 80% sensitive, 100% specific, and 87.5% accurate in staging thoracic lymph nodes in patients with NSCLC, whereas CT scanning was 50% sensitive, 75% specific, and 59.4% accurate. The absence of lymph node tumour involvement was identified by FDG-PET in all 12 patients with N0 disease compared with nine by CT scanning. Lymph node metastases were correctly detected by FDG-PET in three of five patients with N1 disease compared with two by CT scanning, in nine of 11 with N2 disease compared with six by CT scanning, and in all four with N3 nodes compared with two by CT scanning.

Conclusions – FDG-PET provides a new and effective method for staging thoracic lymph nodes in patients with lung cancer and is superior to CT scanning in the assessment of hilar and mediastinal nodal metastases. With regard to resectability, FDG-PET could differentiate reliably between patients with N1/N2 disease and those with unresectable N3 disease.

(Thorax 1997;52:438–441)

Keywords: lung cancer, FDG-PET, lymph node staging.

Methods

PATIENT SELECTION

The case histories of 46 consecutive patients (41 men) of mean age 56.7 years (range 24–78) who underwent thoracotomy for lung tumours from 1994 to August 1995 were analysed. All patients underwent contrast enhanced CT scanning of the chest and mediastinum as well as FDG-PET imaging during the three weeks before surgery.

Of the 46 tumours, 32 were NSCLC (19 squamous cell carcinoma, seven adenocarcinoma, six large cell carcinoma). There were 14 benign diseases (four pneumonia, three tuberculosis, and one each of florid abscess, sarcoidosis, aspergilloma, hamartoma, aneurysm of the subclavian artery, lung fibrosis, and inflammatory pseudotumour). The final diagnosis and the TN classification in patients with lung cancer were established by histo-
Table 1 Accuracy of FDG-PET imaging versus CT scanning in lymph node staging of non-small cell lung cancer

<table>
<thead>
<tr>
<th>Modality</th>
<th>N0</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>Overall accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET</td>
<td>100% (73 to 100)</td>
<td>60% (15 to 95)</td>
<td>82% (48 to 98)</td>
<td>100% (40 to 100)</td>
<td>87.5% (71 to 96)</td>
<td>80% (56 to 94)</td>
<td>100% (73 to 100)</td>
</tr>
<tr>
<td>CT</td>
<td>75% (43 to 95)</td>
<td>40% (5 to 85)</td>
<td>54% (23 to 83)</td>
<td>50% (7 to 93)</td>
<td>59.4% (41 to 76)</td>
<td>50% (27 to 73)</td>
<td>75% (43 to 95)</td>
</tr>
</tbody>
</table>

Values are percentages with 95% confidence intervals. Numbers in parentheses are numbers of patients.

Two patients with N2a nodes were classified as N1 with PET; one patient with N2 disease was classified as N1 with CT.

Thoracic computed tomographic scanning

During the two weeks before FDG-PET imaging, contrast-enhanced chest CT scanning was performed with a Pace-scanner (GE Medical Systems, Milwaukee, Wisconsin, USA) from the supravacular region to the adrenal glands as described previously.26 Each CT scan was evaluated by two experienced radiologists blinded to the clinical and PET findings. Medialinal lymph nodes were considered diseased if they exceeded 10 mm in the short axis diameter.

Positron emission tomography

PET was performed with a Siemens-CTI-Ecat 931 Scanner (Knoxville, Tennessee, USA) using attenuation correction and iterative image reconstruction as described previously.29 Static emission scans from the supraclavicular region to the adrenal glands were obtained 50 minutes after administration of 18F-FDG at a mean dose of 250 MBq (range 175–350 MBq). Qualitative evaluation of PET scans was performed blinded and independently by two board-certified nuclear medicine physicians experienced in PET imaging.

Analysis of data

The results of chest CT and FDG-PET scans were compared with the histological findings in the resected lymph nodes to determine their diagnostic specificity (TN/(TN+FP)), sensitivity (TP/(TP+FN)), and accuracy (TP+TN)/(TP+TN+FP+FN) in the N staging of NSCLC (TN= true negative, TP= true positive, FP= false positive, FN= false negative). Proportions were furnished with their 95% confidence interval. The relative accuracy of PET imaging compared with CT scanning was compared by the McNemar test.

Results

The results of histological analysis of thoracic lymph nodes were available from all of the 32 patients with NSCLC (table 1). FDG-PET was 87.5% accurate for the diagnosis of the presence or absence and involved station of thoracic nodal disease whereas CT scanning was 59.4% accurate (p<0.02). Two patients with N1 disease were classified as N0 and two with N2a disease were classified as N1 by PET imaging. Three patients with NSCLC had enlarged lymph nodes on the CT scan, suggested N2 disease, which were negative at PET imaging (table 2). All nodes were histologically negative for tumour involvement but had characteristic signs of non-specific inflammation. Four patients with N2 disease had increased FDG uptake in normal sized nodes at CT scanning; all had tumour involvement at pathological examination. With regard to definitive surgical treatment, FDG-PET could reliably identify patients with unresectable N3 disease while CT scanning failed in two out of four.

In two patients with benign lung processes (aspergilloma, tuberculosis) there were positive ipsilateral hilar lymph nodes at FDG-PET imaging which were enlarged on the CT scan and had histopathologically characteristic signs of non-specific inflammation. In another three patients with benign lung lesions (sarcoidosis, inflammatory pseudotumour, pneumonia) enlarged ipsilateral hilar lymph nodes on the CT scan showed no increased uptake of FDG.

In detecting malignancy of the primary lesion, FDG-PET had a sensitivity, specificity, and accuracy of 93.8%, 85.7%, and 91.3%, respectively. The false negative findings were a 1 cm intrapulmonary metastasis of an adenocarcinoma showing no increased FDG uptake.
Guhlmann, Storck, Kotzerke, Moog, Sunder-Plassmann, Reske

Invasive method for evaluating regional lymph nodes in patients with NSCLC. Regional lymph nodes are considered abnormal by CT scanning if they are more than 1 cm in short axis diameter. However, enlarged lymph nodes may be merely hyperplastic and normal sized ones may contain tumour. According to recent studies, malignant mediastinal lymph nodes are not larger than benign nodes and small mediastinal lymph nodes are not infrequently malignant. Consequently, the sensitivity and specificity of CT scanning for detecting metastases to mediastinal lymph nodes from NSCLC is as low as 52% and 69%, respectively.

Unlike CT scanning and MRI which provide anatomical information and may be valuable for the preoperative assessment of mediastinal or chest wall invasion of lung cancer, FDG-PET imaging provides information on increased tumour metabolism. The ability of FDG-PET to detect microscopic amounts of metabolically highly active tumour in otherwise clinically normal lymph nodes may partly explain why FDG-PET imaging is more accurate than CT scanning for staging regional lymph nodes in patients with NSCLC. Equally interesting was the observation that, in three histologically confirmed cases, enlarged N2 nodes seen on the CT scan showed no FDG uptake and were not involved with tumour. Thus, FDG-PET imaging correctly predicted the absence of tumour involvement, while CT scanning falsely suggested the presence of tumour. Our initial data suggest that FDG-PET may supplant invasive diagnostic procedures such as mediastinoscopy in these patients.

Wahl et al reported that FDG-PET alone was 82% sensitive and 81% specific for detecting hilar and mediastinal lymph node metastases in patients with NSCLC while CT scanning alone was 65% sensitive and 44% specific. Additionally, in two recently published studies FDG-PET imaging has been shown to be superior to CT scanning in the detection of thoracic lymph node metastases of NSCLC with accuracies of 100% and 82% compared with 69% for CT scanning; however, they failed to differentiate various nodal stations and N2/N3 disease. These studies are therefore of limited clinical value for distinguishing between patients who are potentially suitable for surgical resection and those with unresectable N3 disease. The most important finding of our study was that FDG-PET could differentiate reliably between patients with N1/N2 disease and those with unresectable N3 disease. Thoracotomy for curative resection would have been avoided in two of our patients with N3 disease and normal sized contralateral lymph nodes on the CT scan. In a recent report, using decision tree analysis, the cost effectiveness of FDG-PET in the staging of NSCLC has been shown.

Two false negative findings in N1 disease do not devalue FDG-PET imaging since the specific level of N1 nodes does not influence surgical treatment and does not appear to have any prognostic implications. Furthermore, a more reliable although clinically less significant
Nodal staging of lung cancer with FDG-PET

differentiation between tumour involvement in peribronchial hilar nodes (N1 disease) and mediastinal nodes adjacent to the bronchus (N2a disease) may be possible by combining anatomical information from the CT scan with metabolic information from the PET image.21 Our findings concerning the high accuracy of FDG-PET imaging in differentiating malignant from benign lung tumours are in line with the results of others who have reported sensitivities for detecting malignancy in the range of 83–100%, specificities of 78–100%, and accuracies of 86–100%.10,11,13,15,20,21,38 Inaccuracies may arise with FDG-PET imaging of lung tumours whenever small tumours with low proliferative activity are imaged or active inflammation is present.23 Since inflammatory cells such as activated macrophages also avidly take up FDG,19 false positive findings have been reported in active lung diseases such as granulomas and abscesses.8,10,13,21,23 Fusion, FDG-PET imaging as a complementary adjunct to CT scanning should lead to more accurate non-invasive lymph node staging of lung cancer, resulting in improved treatment planning and prognostic information while decreasing the need for invasive diagnostic procedures such as mediastinoscopy.
