Increased urinary excretion of LTE₄ after exercise and attenuation of exercise-induced bronchospasm by montelukast, a cysteinyl leukotriene receptor antagonist

Theodore F Reiss, James B Hill, Eloise Harman, Ji Zhang, Wesley K Tanaka, Edwin Bronsky, Debra Guerreiro, Leslie Hendeles

Abstract

Background – A study was undertaken to determine whether montelukast, a new potent cysteinyl leukotriene receptor antagonist, attenuates exercise-induced bronchoconstriction. The relationship between the urinary excretion of LTE₄ and exercise-induced bronchoconstriction was also investigated.

Methods – Nineteen non-smoking asthmatic patients with a forced expiratory volume in one second (FEV₁) of ≥65% of the predicted value and a reproducible fall in FEV₁ after exercise of at least 20% were enrolled. Subjects received placebo and montelukast 100 mg once daily in the evening or 50 mg twice daily, each for two days, in a three-period, randomised, double blind, crossover design. In the evening, approximately 20–24 hours after the once daily dose or 12 hours after the twice daily dose, a standardised exercise challenge was performed. Data from 14 patients were available for complete analysis.

Results – The mean (SD) maximal percentage decrease in FEV₁ after exercise was 29.6 (16.0), 17.1 (8.2), and 14.0 (9.4) for placebo, once daily, and twice daily regimens, respectively. The mean (95% CI) percentage protection was 37 (15 to 59) for the group who received 50 mg twice daily and 50 (31 to 69) for those who received 100 mg once daily. Active treatments were not different from each other. The mean (SD) plasma concentrations of montelukast were higher after the twice daily regimen (1.27 (0.81) µg/ml) than after the once daily regimen (0.12 (0.09) µg/ml); there was no correlation between the percentage protection against exercise-induced bronchoconstriction and plasma concentrations. After exercise urinary excretion of LTE₄ increased significantly during placebo treatment (from 34.3 to 73.7 pg/mg creatinine; p<0.05) but did not correlate with the extent of exercise-induced bronchoconstriction.

Conclusions – Montelukast protects similarly against exercise-induced bronchoconstriction between plasma concentrations of 0.12 and 1.27 µg/ml. The increase in the urinary excretion of LTE₄ after exercise and the protection from exercise-induced bronchoconstriction with a cysteinyl leukotriene receptor antagonist provide further evidence of the role of leukotrienes in the pathogenesis of exercise-induced bronchoconstriction.

(Thorax 1997;52:1030–1035)

Keywords: leukotriene receptor antagonist, exercise-induced bronchoconstriction, montelukast.

Cysteinyl leukotrienes, synthesised from arachidonic acid through the 5-lipoxygenase pathway, have an important role in asthma.¹ Leukotriene C₄ (LTC₄) is the dominant metabolite of arachidonic acid released in lung tissue and is very unstable and quickly converted to leukotriene D₄ (LTD₄). In turn, LTD₄ is converted to a less potent metabolite, leukotriene E₄ (LTE₄), which is excreted in the urine.² These leukotrienes are released from eosinophils, mast cells, and other inflammatory cells in the airways of patients with asthma and are highly potent constrictors of bronchial smooth muscle.³ Observations in experimental animal models also suggest that they stimulate airway mucus secretion, impair mucociliary clearance, and increase vascular permeability.³

There is increasing evidence of the importance of the cysteinyl leukotrienes as mediators of exercise-induced bronchoconstriction. Although the mechanism of exercise-induced bronchoconstriction is controversial, one theory suggests that loss of heat and water from the respiratory mucosa during exercise results in a hyperosmolar stimulus of mast cell degranulation releasing bronchospastic mediators such as leukotrienes.⁴ Previous studies have shown that cysteinyl leukotriene receptor antagonists attenuate airway responsiveness to exercise, suggesting that the pathogenesis of exercise-induced bronchoconstriction, at least in part, involves the release of leukotrienes.⁵,⁶ If leukotrienes are involved in exercise-induced bronchoconstriction, then urinary excretion of LTE₄ should increase after exercise. However, the evidence is conflicting⁷,⁸ and increases have only been seen in children with more severe asthma.⁸

Montelukast (MK-0476) is an orally bioavailable, selective, and potent cysteinyl leukotriene receptor antagonist capable of significant blockade of airway cysteinyl leukotriene receptors over a 24 hour dosing interval.⁹

Since cysteinyl leukotriene receptor antagonists differ in potency, the present study was...
conducted to determine whether montelukast attenuates exercise-induced bronchoconstriction and whether there is a relationship between plasma concentration and effect by testing two dosage regimens producing different plasma concentrations. In addition, it was the aim of this study to determine whether a sensitive assay could detect an increase in the urinary excretion of LTE4, after exercise.

Methods

SUBJECTS

Nineteen men aged 18–46 years with exercise-induced bronchoconstriction were selected for study. Each subject had at least a one year history of typical recurring symptoms of asthma including dyspnoea, wheezing, and cough. Furthermore, during the prestudy evaluation each subject had a forced expiratory volume in one second (FEV1) of at least 65% of the predicted value for age, height, and sex. A 20% decrease in FEV1, in response to standardised exercise bronchoprovocation was required on two prestudy (qualifying) visits. All of the subjects were non-smokers for at least a year, with a smoking history of no more than one pack per day for five years. Subjects were excluded if they had other illnesses based upon history, physical or laboratory examination, or had a respiratory infection within six weeks of the prestudy visit. Asthma medications were limited to rapidly acting inhaled β agonists and inhaled corticosteroids (maintained at a constant dose beginning four weeks before and throughout the study). All inhaled β agonists were withheld for at least six hours and inhaled corticosteroids for at least one hour before the exercise challenges. None of the subjects were taking anti-histamines or salmeterol prior to the study. The protocol was approved by the institutional review board and written informed consent was obtained from each subject.

STUDY DESIGN

The study was a double blind, randomised, three period, crossover trial. Treatments consisted of either 100 mg of montelukast with the evening meal and placebo with breakfast, 50 mg of montelukast with the evening meal and breakfast, or placebo twice daily for two days (to achieve steady state plasma concentration). Thus, all subjects received a total of 100 mg/day of montelukast or placebo in the 48 hour period prior to the test exercise challenge.

All subjects returned to the pulmonary function laboratory on the third day between 15.00 and 17.00 hours when the exercise challenge was performed 10–12 hours after the last dose of the twice daily regimen or 22–24 hours after the last dose of the once daily regimen. In addition, routine physical examinations were performed, vital signs and electrocardiographic changes were measured, and blood and urine were collected for laboratory tests of safety and measurement of montelukast plasma concentration and urine concentration of LTE4. Adherence was monitored by capsule counts, telephone contact by the study coordinator, and plasma concentrations of montelukast. The interval between treatment periods was at least four days.

EXERCISE CHALLENGE

For each subject exercise was performed on a treadmill for six minutes. The gradient and speed of the treadmill was adjusted to achieve a work load of more than 80% of that subject’s age-predicted maximum heart rate. Minor adjustments in work load were allowed in order to achieve the heart rate obtained in the prestudy visits. Pre-exercise spirometric values were measured in accordance with ATS guidelines and were expected to be at least 65% of the predicted value five minutes before exercise for the challenge to proceed. During the exercise the subject wore a nose clip and breathed room air (constant ambient environment in air-conditioned laboratories). FEV1 was measured immediately after exercise and at five, 10, 15, 30, 45, 60, 75 and 90 minutes. After exercise a β agonist was administered to the patient if the FEV1 fell by ≤40% of the predicted value, if it was requested by the patient, or if the investigator thought it was clinically indicated.

MONTELUKAST PLASMA CONCENTRATION

For the analysis of plasma drug concentration blood samples were collected from all subjects on the second prestudy visit and three minutes before exercise on day 3 (study day) of each treatment period. The plasma specimens were analysed for montelukast by high performance liquid chromatography (HPLC). The limit of detection was 30 ng/ml. The intraday precision values (percentage Relative Standard Deviation, %RSD) were in the range of 0.5–7.7% and the interday precision values (%RSD) at concentrations of 51 and 2040 ng/ml were 10% and 3%, respectively.

URINE LTE4 AND CREATININE

A separate objective of this study was to determine whether exercise challenge in asthmatic patients with exercise-induced bronchoconstriction is associated with increases in urinary concentrations of LTE4. Urine was collected one hour before and one and two hours after exercise. Urinary LTE4 concentrations (pg/ml) were expressed as the ratio of creatinine (mg/ml) to correct for differences in urinary volume. Urinary LTE4 was measured by a modified HPLC/radioimmunoassay originally described by Tagari et al. and used clinically to demonstrate increases in urinary LTE4 levels after antigen challenge in allergic asthmatic patients. HPLC separation was carried out as described previously and fractions were assayed in a competitive-binding radioimmunoassay using a commercially available peptideyl leukotriene antibody (Cascade Biochem Ltd, Berkshire, UK).

The between day precision of the radioimmunoassay, expressed as coefficient of vari-
Reiss, Hill, Harman, Zhang, Tanaka, Bronsky, et al

Data analysis

Exercise end points: general

The ability of montelukast to attenuate exercise-induced bronchoconstriction was determined by comparing three study end points among treatments: the maximum percentage decrease in FEV$_1$ after exercise, the time required after maximal decrease for FEV$_1$ to return to within 5% of the pre-exercise baseline value (recovery time), and the area above the post-exercise FEV$_1$/time curve (AUC$_{0\to60}$).

The mean of the 20 minute and five minute pre-exercise measurements was used as the pre-exercise FEV$_1$ value. End points were calculated for each individual and then averaged. If a patient required a bronchodilator during the post-exercise period or the FEV$_1$ value was not available, the last recorded FEV$_1$ was used at all subsequent time points.

Maximal decrease in FEV$_1$

The maximum percentage decrease in FEV$_1$ after exercise was defined as:

\[
\text{Maximal decrease in } \text{FEV}_1 = \frac{(\text{pre-exercise FEV}_1 - \text{lowest FEV}_1 \text{ after exercise}) \times 100}{\text{pre-exercise FEV}_1}
\]

The ability of the two montelukast dosage regimens to attenuate airway responsiveness to exercise relative to placebo was defined as percentage protection from exercise-induced bronchoconstriction and calculated as follows:

\[
\text{% protection} = \frac{\text{maximum % fall on placebo} - \text{maximum % fall on drug}}{\text{maximum % fall on placebo}} \times 100
\]

Time to recovery

The time to recovery was defined as the time required after maximum decrease in FEV$_1$ for the FEV$_1$ to return to within 5% of the pre-exercise baseline value. If the exercise-induced bronchoconstriction was completely blocked (maximal decrease in FEV$_1$ \leq 5%) the time to recovery was assigned a value of zero minutes. Additionally, if the post-exercise FEV$_1$ did not return to within 5% of baseline within 90 minutes the recovery time was assigned a value of 100 minutes minus the time required for the maximum decrease in FEV$_1$ from baseline to occur.

Area under the curve (AUC)

The area under the post-exercise FEV$_1$ percentage decrease through 60 minutes (AUC$_{0\to60}$) was also determined. This parameter provides a single number that summarises the extent and duration of bronchoconstriction. The trapezoidal method was used to calculate the AUC$_{0\to60}$. Only areas below the pre-exercise baseline were included when computing the AUC$_{0\to60}$.

Urinary LTE$_4$

The ability of exercise to increase urinary LTE$_4$ levels (pg/mg creatinine) was determined by analysing the change between the pre-exercise and the value two hours after exercise.

Statistical analysis

The analysis of variance (ANOVA) model for a crossover study was used to compare treatments for the three end points. The model included terms for subject, treatment, and period. Carryover effects were assessed by adding a carryover factor in the ANOVA model. Pairwise comparisons of the treatment means were made using linear contrasts. 95% confidence limits on differences or changes from baseline were provided when appropriate with p values of \leq 0.05 (with a two-tailed test) being considered significant.

The study was designed to have 80% power (for 12 completing patients) to detect (at $\alpha = 0.05$, two-sided) a mean difference between treatment groups of 8.1 percentage points for maximal percentage decrease in FEV$_1$.

Results

Demographic data

Nineteen subjects qualified and received allocation numbers. Three subjects discontinued before completing the three study periods.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (years)</th>
<th>Prestudy FEV$_1$ (% predicted)</th>
<th>Maximal decrease in FEV$_1$ after exercise (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>81.3</td>
<td>23.5</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>89.3</td>
<td>28.0</td>
</tr>
<tr>
<td>3</td>
<td>19</td>
<td>78.2</td>
<td>43.6</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>101.6</td>
<td>37.0</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>81.2</td>
<td>19.9</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>74.0</td>
<td>24.6</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>71.8</td>
<td>36.6</td>
</tr>
<tr>
<td>8</td>
<td>46</td>
<td>80.3</td>
<td>24.5</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>80.7</td>
<td>24.9</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>80.9</td>
<td>25.0</td>
</tr>
<tr>
<td>11</td>
<td>30</td>
<td>70.2</td>
<td>31.3</td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>65.6</td>
<td>61.8</td>
</tr>
<tr>
<td>13</td>
<td>33</td>
<td>84.6</td>
<td>31.9</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>91.6</td>
<td>62.3</td>
</tr>
<tr>
<td>Median</td>
<td>26</td>
<td>80.8</td>
<td>29.7</td>
</tr>
<tr>
<td>Range</td>
<td>18–46</td>
<td>65.6–101.6</td>
<td>19.9–62.3</td>
</tr>
</tbody>
</table>

*Average of two pre-exercise challenges.

† Patient was using inhaled corticosteroids at a constant dose throughout the study.
Montelukast and exercise

Figure 1 Mean forced expiratory volume in one second (FEV1) before and after exercise challenge among 14 subjects with data available from all treatments. Subjects received placebo, montelukast 50 mg twice daily or 100 mg daily for two days. Exercise challenge was performed 12 hours after the last dose on the twice daily regimen or placebo and 24 hours after the last dose of the once daily regimen. At the time of the exercise challenge the mean montelukast trough plasma concentrations were 1.27 μg/ml on the twice daily regimen and 0.12 μg/ml on the once daily regimen. There was no significant correlation between plasma concentration and the extent of protection for exercise-induced bronchoconstriction.

The mean (SD) maximal percentage decrease in FEV1 from the pre-exercise baseline value was 29.6 (16.0)%, 17.1 (8.2)%, and 14.0 (9.4)% for the placebo, twice daily and once daily regimens, respectively (fig 1, table 2). The decrease in FEV1 was significantly (p<0.05) attenuated during both montelukast treatment regimens compared with placebo (mean protection of 37% (95% CI 15 to 59) for the group who received 50 mg twice daily and 50% (95% CI 31 to 69) for those who received 100 mg once daily, but there was no significant difference between the active treatments. Montelukast provided a mean protection against exercise-induced bronchoconstriction of 37% (95% CI 15 to 59) during the twice daily regimen and 50% (95% CI 31 to 69) during the once daily regimen (p<0.05).

The mean time to recovery to within 5% of the pre-exercise baseline FEV1 value after the minimum decrease in post-exercise challenge was 67.1 (30.1), 20.7 (23.3), 25.7 (33.4) minutes for the placebo, twice daily, and once daily regimens, respectively (table 2). The recovery time was significantly shorter with both active treatments (p<0.001) than with placebo but did not differ between themselves.

The mean AUC0±60 was 1166 (980)%×l, 368 (218)%×l, and 387 (316)%×l (table 2) for the placebo, twice daily and once daily regimens, respectively. Both active treatments were significantly (p<0.001) smaller than placebo but did not differ between themselves.

Beta agonist was administered to five patients while receiving placebo, three patients while receiving montelukast 100 mg once daily, but to no patients receiving montelukast 50 mg twice daily.

Table 2 Response to exercise challenge

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Maximal decrease in FEV1 (% change from pre-exercise baseline)</th>
<th>Time to recovery (min) (FEV1 to 5% of pre-exercise baseline)</th>
<th>AUC0±60 minutes (min × %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo 50 mg twice daily</td>
<td>Montelukast 100 mg once daily</td>
<td>Placebo Montelukast 50 mg twice daily</td>
</tr>
<tr>
<td>1</td>
<td>13.0 16.9 9.3</td>
<td>61.8 30.0 5.0</td>
<td>609 494 340</td>
</tr>
<tr>
<td>2</td>
<td>21.1 14.8 3.9</td>
<td>32.5 9.5 0.0</td>
<td>632 334 12</td>
</tr>
<tr>
<td>3</td>
<td>54.1 31.5 33.2</td>
<td>90.0 13.6 25.0</td>
<td>833 366 867</td>
</tr>
<tr>
<td>4</td>
<td>19.5 24.5 19.2</td>
<td>90.0 3.0 0.0</td>
<td>675 210 50</td>
</tr>
<tr>
<td>5</td>
<td>17.8 7.7 5.3</td>
<td>40.0 19.0 4.4</td>
<td>798 727 572</td>
</tr>
<tr>
<td>6</td>
<td>35.4 22.4 13.4</td>
<td>77.5 36.3 32.5</td>
<td>1123 373 105</td>
</tr>
<tr>
<td>7</td>
<td>21.6 26.3 22.5</td>
<td>63.0 16.0 2.5</td>
<td>1180 304 196</td>
</tr>
<tr>
<td>8</td>
<td>35.6 16.9 7.2</td>
<td>4.6 12.5 90.0</td>
<td>105 137 521</td>
</tr>
<tr>
<td>9</td>
<td>15.0 7.2 14.7</td>
<td>85.0 0.0 0.0</td>
<td>427 0 1</td>
</tr>
<tr>
<td>10</td>
<td>8.9 0.4 0.7</td>
<td>25.0 12.5 55.0</td>
<td>630 309 606</td>
</tr>
<tr>
<td>11</td>
<td>29.1 16.1 16.8</td>
<td>90.0 14.4 95.0</td>
<td>3482 290 867</td>
</tr>
<tr>
<td>12</td>
<td>60.0 19.2 26.4</td>
<td>85.0 12.5 0.0</td>
<td>1240 264 237</td>
</tr>
<tr>
<td>13</td>
<td>32.8 16.9 5.3</td>
<td>95.0 15.0 8.3</td>
<td>1429 525 238</td>
</tr>
<tr>
<td>14</td>
<td>50.4 19.5 19.0</td>
<td>67.1 20.7 25.7</td>
<td>1166 368 387</td>
</tr>
<tr>
<td>Mean</td>
<td>29.6 17.1 14.0</td>
<td>30.1 23.3 33.4</td>
<td>980 218 316</td>
</tr>
<tr>
<td>SD</td>
<td>16.0 8.2 9.4</td>
<td>12.6 15.8 46.3</td>
<td>400 779 779</td>
</tr>
<tr>
<td>Difference</td>
<td>12.6 9.7 to 22.0</td>
<td>69.5 to 23.8</td>
<td>(371 to 1229) (350 to 1208)</td>
</tr>
</tbody>
</table>

MONTELUKAST PLASMA CONCENTRATIONS

Plasma concentrations from 11 patients were available for analysis. The pre-exercise mean (SD) plasma concentration of montelukast was 1.27 (0.81) μg/ml during the 50 mg twice daily regimen and 0.12 (0.09) μg/ml for the 100 mg twice daily regimen and 0.12 μg/ml on the once daily regimen. There was no significant correlation between plasma concentration and the extent of protection for exercise-induced bronchoconstriction.
Lukast treatments. A 5-lipoxygenase inhibitor. Since leukotriene in the pathogenesis of exercise-induced bronchospasm. The results of this study provide further evidence that cysteinyl leukotrienes are involved in the pathogenesis of exercise-induced bronchoconstriction. This conclusion is based upon the observation that the concentration of LTE4 increased after exercise challenge and montelukast, a potent and specific inhibitor of cysteinyl leukotrienes, attenuated the characteristic decrease in FEV1 following exercise.

This study shows that urinary concentrations of LTE4 increase after exercise in adults with mild asthma. Previous studies have shown an increase in urine concentrations of LTE4 during severe episodes of worsening asthma and after bronchoprovocation with allergen or aspirin. However, results from exercise studies have been conflicting. Previous adult studies were unable to detect increases in urinary levels of LTE4 after exercise while others detected increases after exercise in children with asthma but not in normal children. A possible explanation for the differences between studies in the recovery of LTE4 may be the timing of sample collection and/or the sensitivity of the assay employed.

The protection from exercise-induced bronchospasm was similar 24 hours after montelukast 100 mg once daily and 12 hours after 50 mg twice daily. On average, the plasma concentrations were almost 10 times higher at the trough of the twice daily regimen than at the trough of the once daily regimen, yet the protection was no greater. This indicates that the response after the 100 mg once daily regimen (0.12 pg/ml) is at or near the top of the concentration-response curve. A subsequent large clinical trial has shown the clinical benefit of montelukast in chronic asthma at a lower dose of 10 mg once daily at bedtime.

If a β agonist was administered after exercise the last value before its administration was used at all subsequent time points. This decision rule tends to underestimate the true end point values (maximal FEV1 % fall, time to recovery, and AUC). Because rescue occurs more frequently with placebo, the true difference between active treatment and placebo will also be underestimated.

Adverse effects were generally reproducible – for example, between prestudy and placebo treatments – providing internal validation to the conclusions of this study.

Using the parameters of the maximal fall in FEV1 after exercise, previous studies have shown that β2 selective sympathomimetics may provide about 70% protection from exercise-induced bronchospasm immediately after administration which dissipates within six hours with short acting agents and within 12 hours with long acting agents. Cromolyn provides about 50% protection within the first two hours after administration. In the present study montelukast produced about 50% protection 24 hours after dosing. The magnitude of inhibition is consistent with similar studies with cysteinyl leukotriene receptor antagonists or a 5-lipoxygenase inhibitor. Since leukotriene modifiers (5-lipoxygenase inhibitors or receptor antagonists) incompletely block the response to exercise, it is probable that other mediators released in response to exercise are also involved in the pathogenesis of exercise-induced bronchospasm.

Table 3 Clinical adverse events

<table>
<thead>
<tr>
<th>Placebo</th>
<th>Montelukast 100 mg once daily</th>
<th>Montelukast 50 mg twice daily</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back pain</td>
<td>Asthma</td>
<td>Dry mouth</td>
</tr>
<tr>
<td>Nausea</td>
<td>Fatigue</td>
<td>Diarrhoea</td>
</tr>
<tr>
<td>Headache</td>
<td>Epistaxis</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory infection</td>
<td>Asthma</td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each listing represents a single episode.

Figure 2 Mean (SE) urinary concentration of LTE4 (pg/mg creatinine) before and one and two hours after exercise in 13 subjects while receiving placebo. Patients received placebo, montelukast 50 mg twice daily or 100 mg for two days before exercise in a double blind, randomised, crossover design. There was no significant correlation between severity of exercise-induced bronchoconstriction and urinary concentration of LTE4.

LTE4 IN URINE

The urinary concentration of LTE4 increased significantly (p<0.05) two hours after exercise challenge during placebo treatment from a mean (SD) of 34.3 (6.9) pg/mg creatinine to 73.7 (20.4) pg/mg creatinine (fig 2). Neither the pre-exercise LTE4 nor the change in LTE4 after exercise correlated with the maximal decrease in FEV1 after exercise.

ADVERSE EFFECTS

Clinical adverse events were infrequent and there were no significant differences in frequencies between the three treatments (table 3). There were no significant changes in laboratory measurements of blood haematology and chemistry or urinalysis with montelukast treatments.

Discussion

The results of this study provide further evidence that cysteinyl leukotrienes are involved in the pathogenesis of exercise-induced bronchoconstriction. This conclusion is based upon the observation that the concentration of LTE4 increased after exercise challenge and montelukast, a potent and specific inhibitor of cysteinyl leukotrienes, attenuated the characteristic decrease in FEV1 following exercise.

This study shows that urinary concentrations of LTE4 increase after exercise in adults with mild asthma. Previous studies have shown an increase in urine concentrations of LTE4 during severe episodes of worsening asthma and after bronchoprovocation with allergen or aspirin. However, results from exercise studies have been conflicting. Previous adult studies were unable to detect increases in urinary levels of LTE4 after exercise while others detected increases after exercise in children with asthma but not in normal children. A possible explanation for the differences between studies in the recovery of LTE4 may be the timing of sample collection and/or the sensitivity of the assay employed.

The protection from exercise-induced bronchospasm was similar 24 hours after montelukast 100 mg once daily and 12 hours after 50 mg twice daily. On average, the plasma concentrations were almost 10 times higher at the trough of the twice daily regimen than at the trough of the once daily regimen, yet the protection was no greater. This indicates that the response after the 100 mg once daily regimen (0.12 pg/ml) is at or near the top of the concentration-response curve. A subsequent large clinical trial has shown the clinical benefit of montelukast in chronic asthma at a lower dose of 10 mg once daily at bedtime.

If a β agonist was administered after exercise the last value before its administration was used at all subsequent time points. This decision rule tends to underestimate the true end point values (maximal FEV1 % fall, time to recovery, and AUC). Because rescue occurs more frequently with placebo, the true difference between active treatment and placebo will also be underestimated.

Exercise challenges were generally reproducible – for example, between prestudy and placebo treatments – providing internal validation to the conclusions of this study.

Using the parameters of the maximal fall in FEV1 after exercise, previous studies have shown that β2 selective sympathomimetics may provide about 70% protection from exercise-induced bronchospasm immediately after administration which dissipates within six hours with short acting agents and within 12 hours with long acting agents. Cromolyn provides about 50% protection within the first two hours after administration. In the present study montelukast produced about 50% protection 24 hours after dosing. The magnitude of inhibition is consistent with similar studies with cysteinyl leukotriene receptor antagonists or a 5-lipoxygenase inhibitor. Since leukotriene modifiers (5-lipoxygenase inhibitors or receptor antagonists) incompletely block the response to exercise, it is probable that other mediators released in response to exercise are also involved in the pathogenesis of exercise-induced bronchospasm.
Montelukast and exercise

The authors thank Amy Ko for assisting with the statistical analysis, Stephanie Simon for expert technical assistance in the urinary LTE4 assay, and Joy Mitchell and Judy Evans for word processing and editing the typescript.

This study was supported by a grant from the Merck Research Laboratories, Rahway, New Jersey, NIH Short Term Research Training for Minority Students, and NIH General Clinical Research Center Grant #M-01-RR00082.

7 Jarjour NN, Calhoun WJ. Exercise-induced asthma is not associated with mast cell activation or airway inflammation. J Allergy Clin Immunol 1992;89:60–8.

