Impact of management guidelines on the outcome of severe community acquired pneumonia

N A Hirani, J T Macfarlane

Abstract

Background – Ten years ago we published a study of 50 adults with severe community acquired pneumonia admitted to our intensive care unit and subsequently introduced guidelines for the management of severe community acquired pneumonia which are largely in accordance with those of the British Thoracic Society. The results of a follow up study are now reported in order to assess their impact on the outcome of this disease.

Methods – Fifty seven cases of severe community acquired pneumonia admitted to our ICU between 1984 and 1993 were studied. Causal pathogens, clinical and laboratory features of severity, antibiotic therapy and mortality were studied and, where possible, compared with results from the previous study.

Results – Streptococcus pneumoniae, Legionella pneumophila and Staphylococcus aureus were the most frequent causes of severe community acquired pneumonia, as in the previous study. The intensity of microbial investigation has increased, particularly with regard to pneumococcal and Legionella antigen testing, the latter allowing earlier diagnosis of Legionella infection than previously. In spite of this, no pathogen was identified in 33% of cases compared with 18% previously. Indices of severity of illness were widely recognised, and a decrease in unplanned transfers to the ICU following “unexpected” cardiopulmonary arrest from 25% to 7% (p<0.02) was found. Antibiotic therapy largely reflected guideline recommendations with 98% receiving a beta-lactam agent and 91% erythromycin. The overall mortality was 58% compared with 54% previously.

Conclusions – Management guidelines for severe community acquired pneumonia have been widely adopted but without a reduction in mortality in our hospital. Factors other than early diagnosis, appropriate antibiotics, or prompt ICU transfer may influence the outcome in severe community acquired pneumonia.

Keywords: severe community acquired pneumonia, guidelines, mortality.

Methods

All patients with a diagnosis of severe community acquired pneumonia admitted to the ICU of Nottingham City Hospital between January 1984 and December 1993, excluding 1986 for which no data are available, were identified. Complete documentation was available for 57 of these 58 patients. Patients known to be immunocompromised through underlying disease or immunosuppressive drugs other than low dose oral steroids were excluded.

Normal practice included the collecting of blood, respiratory secretions, and urine for investigation. Serum was examined for com-
over 60 years (14/52) was significantly different from 1984±1993 (n=57) = (p<0.02).

Results
Of the 57 patients studied (38 men) the mean age was 57 years (range 15–83) and 34 (62%) were aged over 60 years. A significant coexisting illness (principally chronic cardiac and respiratory conditions) was present in 21 cases (37%). In 28 cases antibiotics had been given prior to hospital admission. The patient profile in the original 10 year study was similar with 52 patients (66% men) of mean age 51 years (range 24–73), 44% with coexisting illness and 4% receiving antibiotics prior to admission to hospital. Only the proportion of patients aged over 60 years (14/52) was significantly different (p<0.02).

All patients underwent blood cultures and initial serological testing and 28 (50%) had further serological testing 7–14 days later. Bronchoscopies were performed on 24 patients (42%).

Aetiology
Streptococcus pneumoniae, Legionella pneumophila, and Staphylococcus aureus were the most important pathogens over the period of the two studies (table 1). The number of cases in which a causal pathogen was identified fell from 82% to 67% during the last 10 years.

Pneumococcal pneumonia accounted for 10 cases (18%) of severe community acquired pneumonia in this study compared with 16 (32%) between 1972 and 1981. Investigations for pneumococcal infection were more intensive in this study. Blood cultures, performed on all patients, were positive in nine cases (six S pneumoniae and three S aureus). Pneumococcal PCA was tested for in 20 (42%) of the nonbacteremic patients of which eight (40%) were positive. In our previous study 16 (31%) patients in total were tested with seven (44%) positive results.

Legionella pneumophila (all serogroup 1) was identified in nine cases (16%) in this study and in 15 cases (30%) previously. Investigations for Legionella species have been more intensive since the introduction of the guidelines and all 57 patients underwent serological testing yielding four positive results compared with 27 patients (50%) and eight positive results.

Table 1 Causes of severe community acquired pneumonia in Nottingham

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases</td>
<td>Deaths</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>10(32%)</td>
<td>12(75%)</td>
</tr>
<tr>
<td>Legionella pneumophila</td>
<td>15(30%)</td>
<td>5(33%)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>5(10%)</td>
<td>5(10%)</td>
</tr>
<tr>
<td>Chlamydia psittaci</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pneumocystis carinii</td>
<td>Not done</td>
<td>Not done</td>
</tr>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Influenza A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Varicella zoster</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Strepococcus milleri</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown</td>
<td>9(18%)</td>
<td>5(56%)</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>27(54%)</td>
</tr>
</tbody>
</table>

* Age profile (years) for 1984–1993 data shown in square brackets as median (range).
** Two cases ascertained with coexisting influenza A infection.
*** Including four cases associated with influenza virus (two influenza A and two influenza B) of which three died.
Previously. In addition, 34 samples (sputum, tracheal aspirate, bronchial lavage fluid, and urine) were tested for *Legionella* antigen by direct immunofluorescent staining or ELISA, yielding three positive results. These tests were not performed in the earlier study. As a result, there was a trend towards a higher mortality directly immuno¯uorescent staining or ELISA, compared with 13 (43%) of those who did not perform in the earlier study. Over the period of both studies, five of whom died. Again there was no significant difference in mortality in patients above and below 60 years (65% versus 48%; p=0.32). This compares with the results from the earlier study in which 93% of patients aged over 60 died but only 37% of those under 60 (p<0.01).

Hyponatraemia (serum sodium level of <130 mmol/l) was present in eight of the nine cases of Legionnaires’ disease, and 14 (25%) received *Staphylococcus aureus* pneumonia in 30 of the 48 non-Legionella cases of which three (10%) had recently travelled abroad (p<0.002).

Staphylococcus aureus pneumonia often occurs in association with influenza infection as noted in six of the 12 patients over the period of both studies, five of whom died. Again there is a seasonal variation with eight of the 12 cases occurring between December and February. There were three cases of *Pseudomonas aeruginosa* infection, all of which occurred after 1990. In each case the severe pneumonia was the presenting feature of previously undiagnosed HIV infection. *Pseudomonas aeruginosa*, cultured from tracheal aspirate, accounted for one case of severe community acquired pneumonia in a patient with chronic lung disease and recent hospital admissions. Gram negative enteric bacilli, usually *Enterobacteriaceae*, were isolated in seven cases from bronchopulmonary samples after at least five days on the ICU and were considered nosocomial in origin.

Clinical features and mortality

Table 2 displays features highlighted as indicators of severity in pneumonia in survivors and non-survivors. Documentation of the presence or absence of at least nine out of the 10 features was recorded in 94% of cases. Acute confusion was present in nine cases (17%) and, if not commented on, was assumed to be absent. No single clinical or laboratory para-

Table 2 Presence of markers of severity in community acquired pneumonia

<table>
<thead>
<tr>
<th>Age</th>
<th>Number</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivors</td>
<td>Deaths</td>
<td>Total</td>
</tr>
<tr>
<td>16–39</td>
<td>9(16)</td>
<td>4(44)</td>
</tr>
<tr>
<td>40–59</td>
<td>14(25)</td>
<td>7(50)</td>
</tr>
<tr>
<td>60–69</td>
<td>21(37)</td>
<td>13(62)</td>
</tr>
<tr>
<td>70–79</td>
<td>9(16)</td>
<td>5(56)</td>
</tr>
</tbody>
</table>

Values in parentheses are percentages.

* Data only available on 11 patients.

Table 3 The impact of age on mortality in severe community acquired pneumonia

<table>
<thead>
<tr>
<th>Feature</th>
<th>Survivors</th>
<th>Deaths</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-existing illness</td>
<td>11(46)</td>
<td>10(32)</td>
<td>21(37)</td>
</tr>
<tr>
<td>Respiratory rate ≥30/min</td>
<td>12(50)</td>
<td>18(56)</td>
<td>30(55)</td>
</tr>
<tr>
<td>Diastolic BP ≤60 mmHg</td>
<td>2(8)</td>
<td>7(21)</td>
<td>9(16)</td>
</tr>
<tr>
<td>Acute confusion*</td>
<td>3(13)</td>
<td>6(21)</td>
<td>9(41)</td>
</tr>
<tr>
<td>Blood urea >7 mmol/l</td>
<td>13(54)</td>
<td>22(67)</td>
<td>35(61)</td>
</tr>
<tr>
<td>Arterial P<8 kPa</td>
<td>15(63)</td>
<td>23(70)</td>
<td>38(67)</td>
</tr>
<tr>
<td>WCC <4 or >20 ×10^9/l</td>
<td>3(13)</td>
<td>7(21)</td>
<td>10(18)</td>
</tr>
<tr>
<td>Serum Na <130 mmol/l</td>
<td>8(33)</td>
<td>6(18)</td>
<td>14(25)</td>
</tr>
<tr>
<td>Serum albumin <30 g/l</td>
<td>6(25)</td>
<td>11(33)</td>
<td>17(30)</td>
</tr>
<tr>
<td>Multilobar shadows</td>
<td>6(25)</td>
<td>10(30)</td>
<td>16(28)</td>
</tr>
</tbody>
</table>

Values in parentheses are percentages.

* Data only available on 11 patients.

Antibiotic therapy

Most of the patients received a beta-lactam agent on admission; 39 (68%) received ampicillin and 17 (30%) cefuroxime or cefotaxime. Erythromycin was administered to 91% of patients upon ICU admission. This is in accordance with our local guidelines. Only four patients received fluclxacillin on admission of whom only one had *S aureus* pneumonia. Of the remaining six cases of *S aureus* pneumonia four had received ampicillin and two cefuroxime.

Once in the ICU a median of 3.5 antibiotics were used per patient (range 1–7). In addition to a beta-lactam agent and erythromycin, 16 patients (28%) received rifampicin including all nine cases of Legionnaires’ disease, and 14 (25%) received fluclxacillin including all seven cases of *S aureus* pneumonia. Twelve patients (21%) received an aminoglycoside including the one case of *P aeruginosa* infection and the five cases of nosocomial Gram negative enteric bacilli infection.

Serious adverse effects attributed to an antibiotic and resulting in its discontinuation occurred in 12 cases (20%) – seven cases of grossly deranged liver function tests (three with fluclxacillin, two with rifampicin, and two with
both), two cases of aminoglycoside associated nephropathy, and one of fluclaxacinil related rash.

TRANSFER TO ICU

Of the 57 patients transferred to the ICU 55 required assisted ventilation. Of these, 37 (65%) were transferred electively within 24 hours of admission. Four patients (7%) were only transferred following a cardiorespiratory arrest on the medical ward and six patients were transferred electively after more than 72 hours. In the latter group of 10 patients six fulfilled Rule 1 of the BTS guidelines for the recognition of high risk severe community acquired pneumonia at the time of their admission and subsequently died. The four remaining patients exhibited other markers of severity when admitted and there was one death.

From the time of admission to the ICU 58% of deaths occurred within one week and, of the 11 patients ventilated for 14 days or more, only three (27%) survived. The mean duration of ventilation for survivors and non-survivors was six days.

Discussion

Following our previous study we concluded that “attempts to reduce the mortality from community acquired pneumonia must include early recognition of severe infection, rapid identification of the pathogen involved and better management of the patient”. Management guidelines were introduced with regard to this on the perceived view that these will improve outcome whilst acknowledging the scepticism concerning the effectiveness and motives behind guidelines. The American Thoracic Society guidelines for the management of community acquired pneumonia have recently been re-evaluated. In this study we have shown that our guidelines have largely been adopted but the mortality for severe community acquired pneumonia remains high and unaltered.

Early recognition of severe pneumonia depends upon identification and recording of poor prognostic markers. Our local guidelines highlighted these and they have been verified in several subsequent studies. We have found that the admitting doctors were aware of and recorded these markers. There is a trend towards a higher mortality in older patients and increasing age is associated with worse prognosis, both as an independent risk factor and as a consequence of co-morbid disease. We have noted a trend towards older patients being admitted to our ICU with severe community acquired pneumonia over the last 20 years. This action is supported by the finding that 40% of those aged 60–80 years survived whereas they would presumably have died without intensive care.

A causal pathogen was identified in 67% of cases compared with 82% in our previous study and these figures are comparable to five recent prospective studies of severe community acquired pneumonia in which an aetiological diagnosis was made in 52–81% of cases. The reduction in diagnostic yield occurred despite adherence to our guidelines for more intensive investigation. Our guidelines advocated CIE testing for pneumococcal PCA in non-bacteraemic cases of severe community acquired pneumonia. The specificity of PCA in urine and serum is high, but the sensitivity estimates vary. In this study, 40% of non-bacteraemic cases tested for PCA were positive, demonstrating a high diagnostic yield from this test. Of the 19 cases in which no causal pathogen was identified 10 were never tested for PCA. Direct immunofluorescent staining and ELISA for *Legionella* antigen has resulted in legionnaires’ disease being diagnosed earlier in the illness, allowing for a more rapid and rational use of appropriate antibiotics. That half of our patients underwent bronchoscopy is probably an underestimate, the procedure not always being elicited in the notes. However, in only four cases did bronchial washings disclose an aetiological organism where earlier tests had proven fruitless. Three of these four were *Pneumocystis carinii* pneumonia, confirming the value of this technique in this condition. We did not perform distal protected aspiration or plugged telescoping catheter brushings, techniques reported to reward a higher yield. Only one study has found that increasing the rate of aetiological diagnosis in severe community acquired pneumonia significantly reduces mortality, and even then the authors were doubtful that the relationship was causal.

Our study confirms that *S. pneumoniae*, *L. pneumophila*, and *S. aureus* account for the majority of cases of severe community acquired pneumonia although the local incidence of legionnaires’ disease has fallen. New pathogens are clearly likely to emerge in severe community acquired pneumonia. We diagnosed three cases of *P. carinii* pneumonia in patients not known to be infected by HIV, confirming the need to consider this diagnosis in cases of severe community acquired pneumonia. The low incidence of Gram negative enteric bacilli associated severe community acquired pneumonia is in keeping with previous studies in the UK. In other centres, however, up to 25% of cases of severe community acquired pneumonia are reported to be due to Gram negative pathogens, particularly *Klebsiella* spp and Enterobacteriaceae, probably representing differences in patient populations. In addition, there is evidence of significant false positive diagnoses of up to 30% in severely ill ventilated patients.

Our guidelines stress the importance of an appropriate empirical antibiotic combination at admission to cover all likely pathogens. Initially erythromycin with ampicillin was advocated, with fluclaxacinil added in winter months during possible influenza epidemics. However, the latter agent was clearly underused with four of the seven patients with *S. aureus* pneumonia not receiving an antistaphylococcal agent on admission. In the latter half of the study we substituted ampicillin for a second or third...
The impact of management guidelines on the outcome of severe community-acquired pneumonia

We have improved the timing of patient transfer from the medical ward to the ICU. Only 7% of cases were transferred following a cardiorespiratory arrest compared with 25% in the first study (p<0.02), although most still exhibited poor prognostic markers that should have warranted earlier ICU admission. We detected a trend towards a higher mortality in patients with delayed transfer. It is felt that the outcome in critical illness is probably improved with early ICU transfer. However, Hook et al suggest that the ICU has had little impact on the outcome of bacteremic pneumococcal pneumonia, merely prolonging the time to death in those destined to die, and a recent study of 127 cases of severe community acquired pneumonia found no significant difference in mortality in patients transferred before or after four days from admission.

21. Macfarlane JT, Pugh SF. The importance of appropriate antibiotic therapy in the future. In addition, early recognition of cases likely to require multi-system support allows for planned transfer to the ICU which, for some patients at least, is life saving.

We thank the ICU staff for their cooperation with this study.

15. Feldman C, Kallenbach HL, Reinsch SG, Hurwitz MD, Thorburn JR, Koeningst HJ. Community-acquired pneumo-

25. Andrews CP, Coakall JH, Smith JD, Johnson WG. Dia-

27. Woodhead MA, Radvan J, Macfarlane JT. Adult community-acquired staphylococcal pneumonia in the anti-

