Relationship between the acid-induced cough response and airway responsiveness and obstruction in children with asthma

Toshio Shimizu, Hiroyuki Mochizuki, Kenich Tokuyama, Akihiro Morikawa

Abstract

Background – In children with asthma little is known about the direct effect of the bronchoconstrictor and bronchodilator response on the cough threshold, or the relationship between bronchial responsiveness and the cough threshold. A study was undertaken to determine the effect of histamine-induced bronchoconstriction and salbutamol-induced bronchodilatation on the cough threshold in response to inhaled acetic acid, and to examine the relationship between the acetic acid cough threshold and bronchial hyperresponsiveness to histamine in children with asthma.

Methods – Nineteen children with asthma (16 boys) of mean (SE) age 10·6 (0·6) years were enrolled in the study. On day 1 each underwent a histamine inhalation challenge to determine the provocative concentration causing a fall in forced expiratory volume in one second (FEV1) of more than 20% (PC20) as an index of individual bronchial hyperresponsiveness. On day 2 the acetic acid cough threshold was determined before and just after the inhalation of the PC20 concentration of histamine, and then salbutamol (1 mg/m2) was inhaled to relieve the bronchoconstriction. Ten of the 19 patients (eight boys) of mean age 12·2 (0·7) years also tried acetic acid inhalation challenge just after salbutamol inhalation.

Results – There was no relationship between the bronchial responsiveness to histamine and acetic acid cough threshold in these patients. The acetic acid cough threshold after histamine inhalation was similar to that before histamine, although FEV1 decreased after histamine. In the 10 patients who also tried acetic acid inhalation challenge after salbutamol the cough threshold did not change.

Conclusions – These findings suggest that acid-induced cough sensitivity and bronchomotor tone are independently regulated in children with asthma.

(Thorax 1996;51:284–287)

Keywords: bronchial responsiveness, childhood asthma, cough threshold.

In patients with asthma, cough and bronchoconstriction often occur simultaneously and may be closely related. However, accumulating data indicate that cough and bronchoconstriction are separate airway reflexes. We have reported that inhaled acid can elicit cough without bronchoconstriction in asthmatic children.1 The absence of a permeant anion – for example, chloride – in an isomolar solution causes cough but not bronchoconstriction.2 Inhalation of local anaesthetics inhibits cough but not bronchoconstriction, while sodium cromoglycate inhibits bronchoconstriction but not cough induced by distilled water.3 These observations suggest that the mechanisms of cough and bronchoconstriction are related but can be independently triggered. Fujimura et al recently reported that in normal adult subjects methacholine-induced bronchoconstriction and procaterol-induced bronchodilation did not change the cough threshold induced by inhaled capsaicin and tarsatic acid.4 However, less is known about the direct effect of the bronchoconstrictor and bronchodilator response on the cough threshold in children with asthma.

In the present study we examined whether changes in bronchomotor tone influence the cough threshold in children with asthma. We evaluated the effect of histamine-induced bronchoconstriction and salbutamol-induced bronchodilation on the cough threshold in response to inhaled acetic acid, and examined the relationship between the acetic acid cough threshold and bronchial hyperresponsiveness to histamine in children with asthma.

Methods

SUBJECTS

Nineteen children with atopic asthma (16 boys) of mean (SE) age 10·6 (0·6) years were enrolled in the study. The clinical diagnosis of bronchial asthma was based on a characteristic history of recurrent attacks of dyspnoea with perceptible wheezing. The diagnosis was made after more than one year of follow up. All subjects reacted to allergens in the skin prick test and/or in the radioallergosorbent test (RAST) (development of a wheal 5 mm or larger in a prick test and more than 0·70 PRU in the RAST).

All the patients had been free from upper respiratory tract infections for at least four weeks. They had no asthma-related symptoms at the time of the study. All medications were stopped at least 12 hours before each challenge test.

Informed consent for the study was obtained from the patients and their parents before the examination. The study was approved by the ethics committee of the hospital.
HISTAMINE INHALATION CHALLENGE
Histamine inhalation challenge was performed according to the method of Townley et al with a slight modification. Spirometric tests were performed in each patient. The aerosols were generated by the DeVilbiss model 646 nebuliser (DeVilbiss, Somerset, Pennsylvania, USA) with a constant airflow of 5 l/min. A noseclip was worn and aerosol was inhaled by tidal breathing for two minutes. An aerosol of normal saline solution was inhaled first, followed by twofold increasing concentrations of histamine dihydrochloride (Sigma Chemical Co, St Louis, USA) solutions (from 0.02 to 10 mg/ml). The forced expiratory volume in one second (FEV1) was measured just after each inhalation. Inhalations were carried out until there was a fall in FEV1 of more than 20% compared with the inhalation of control saline, or until the highest concentration was reached. The concentration of histamine leading to a fall in FEV1 of more than 20% (PC20) was considered to be the threshold of the hyperresponsiveness to histamine.

ACETIC ACID INHALATION CHALLENGE
The procedure of acetic acid inhalation challenge has been described previously6 and was similar to that of Mitsuhashi et al which has good reproducibility. Briefly, acetic acid solution was prepared on the same day and diluted twofold with 0.9% saline solution (from 0.04 to 20%, pH 3.13–1.62, osmolarity 292–1113 mOsm/kg), and administered via a DeVilbiss model 646 nebuliser with a constant airflow of 5 l/min. The FEV1 was measured just before and after each inhalation challenge. After local anaesthesia was administered to the nasopharynx by procaine swabbing the subjects wore a noseclip and inhaled the aerosol by tidal breathing for 10 seconds. An aerosol of normal saline solution was inhaled first, followed by twofold increasing concentrations of acetic acid (from 0.04 to 20%) until there was a first cough, recognised by more than two independent observers, or until the highest concentration was reached. It was agreed that the percentage of the acetic acid concentration inducing the first cough would be considered to be the threshold of hyperresponsiveness of cough receptors.

EXPERIMENTAL PROTOCOL
On day 1 each patient underwent histamine inhalation challenge to determine the PC20 as the index of the individual bronchial hyperresponsiveness. On day 2 (one week from day 1) the acetic acid cough threshold was determined before and just after the inhalation of the PC20 concentration of histamine for two minutes. Spirometric tests were performed before and after inhalation of acetic acid and histamine. When all the measurements were completed, a β2 adrenergic agonist, salbutamol (1 mg/m3), was inhaled to relieve the bronchoconstriction.

Ten of the 19 patients (eight boys) of mean age 12.2 (0.7) years tried a further acetic acid inhalation challenge just after the salbutamol inhalation and spirometric tests were performed before and after the inhalation of salbutamol.

STATISTICAL ANALYSIS
Wilcoxon’s matched pairs signed rank test was used to compare spirometric values and the acetic acid cough threshold, and Friedman’s two way analysis of variance was used to compare multiple groups. For correlations between variables Spearman’s rank analysis was used. A probability of less than 0.05 was considered significant.

RESULTS
RELATIONSHIP BETWEEN COUGH THRESHOLD AND BRONCHIAL HYPERRESPONSIVENESS
Figure 1 shows the relationship between the cough threshold (values in the first acetic acid inhalation challenge before histamine) and bronchial hyperresponsiveness to histamine in all 19 children with asthma. There was no relationship between the cough threshold value to inhaled acetic acid and the PC20 value to histamine in these patients (r=0.184, NS).

EFFECT OF BRONCHOCONSTRICTION ON COUGH THRESHOLD
The mean FEV1 before and after the first acetic acid inhalation challenge (before histamine) was 1.67 (0.11) and 1.69 (0.11) l, respectively. There was no significant change between these values. After inhalation of histamine the FEV1 decreased significantly to 1.20 (p<0.01), but no significant change was observed between the values of acetic acid cough threshold before and after histamine (3.78 (0.71)% and 3.91 (0.69)%, respectively, fig 2).

EFFECT OF BRONchodILATION ON COUGH THRESHOLD
The FEV1 before and after inhalation of histamine and after salbutamol inhalation in the 10 patients who tried a further acetic acid inhalation challenge after salbutamol decreased after histamine and significantly increased after salbutamol (p<0.01). There was, however, no
Shimizu, Mochizuki, Tokuyama, Morioka

significant change between the values of the acetic acid cough threshold after histamine and that after salbutamol (3·31 (0·83)% and 3·00 (0·83)%, respectively). Furthermore, no change was observed between the acetic acid cough threshold values and those before histamine inhalation (fig 3).

Discussion
In this study we have shown that the acetic acid cough threshold is independent of bronchial hyperresponsiveness to histamine, and that the bronchoconstrictor and bronchodilator responses do not change the acetic acid cough threshold in children with asthma.

We initially tried to perform this study in a double blind placebo controlled fashion but the patients were able to distinguish active (histamine) from placebo (saline) because they felt dyspnoeic after the histamine inhalation. The physician attending the study also noted wheeze in the patients after inhalation of histamine.

In asthmatic patients wheezing, which is mainly caused by bronchoconstriction, and cough are common symptoms. However, the mechanism of hypersensitivity to bronchoconstriction and cough in asthmatic subjects still remains unclear. Accumulating data have suggested that the two airway reflexes of cough and bronchoconstriction have separate afferent neural pathways and may have a different sensitivity to inhibitory drugs. Eschenbacher et al reported that hyperosmolality was the stimulus that caused both cough and bronchoconstriction, with a low ion concentration inducing cough but not bronchoconstriction. This suggests that bronchoconstriction and cough are produced by stimulation of different populations of afferent nerve endings — that is, irritant receptors and cough receptors.

Cough is a reflex response of the respiratory tract and is produced by inflammatory, mechanical, chemical, and thermal stimulation of the cough receptors, which are believed to be the fine sensory nerve endings of the trigeminal, glossopharyngeal, superior laryngeal, and vagal nerves. Although it is not yet certain why low concentration acid inhalation can induce cough in asthmatic patients, ionic and/or osmolar change in airway luminal fluid may stimulate cough receptors in the mucosa and submucosa directly or indirectly.

With regard to the relationship between the cough threshold and the degree of bronchial hyperresponsiveness, there have been only a few reports indicating that they are independent of each other in adult asthmatic and normal subjects. We have recently reported that the acetic acid cough threshold does not correlate with the degree of bronchial hyperresponsiveness to histamine in children with asthma. In the present study we have reconfirmed this result with a different population and the above findings would indicate that cough sensitivity does not directly correlate with bronchial responsiveness.

With the same patients we examined whether or not the bronchoconstrictor and bronchodilator responses influence the acetic acid cough threshold. Although the direct effect of histamine on cough receptor sensitivity has not been well known, we could find no change in the acetic acid cough threshold after inhalation of a sufficient dose of histamine to cause at least a 20% fall in FEV$. Although our study was not a controlled trial, the possibility that the unchanged acetic acid cough threshold after histamine is due to tachyphylaxis would be unlikely because, as shown in fig 3, the acetic acid cough threshold did not change after salbutamol. This suggests that the cough response is unrelated to the degree of bronchoconstriction. This is consistent with the clinical observation that cough in asthmatic patients is not related to the degree of airways obstruction.

With regard to the effect of inhaled salbutamol, we could find no efficacy in modifying the acetic acid cough threshold in a dose which was sufficient to reduce bronchomotor tone. There have been conflicting reports about the
antitussive potency of inhaled β_2 agonists. Cough induced by distilled water and prosta-
glandin $F_2\alpha$ was reduced by inhalation of fenoterol in both asthmatic and normal sub-
jects. 19-21 Acid-induced cough was inhibited by inhaled salbutamol in asthmatic adults, 22
while inhaled salbutamol and procleroterol had no effect on acid-induced and capsaicin-induced
cough in normal subjects. 22 Our results confirm the lack of effect of inhaled salbutamol on the acetic acid-induced cough threshold in children with asthma. Judging from these observations, if an β_2 agonist has any antitussive activities, it is probably due to its indirect action to change conditions in the vicinity of the cough receptors. 4 The same also applies to the protective mechanism of inhaled frusemide against various stimuli. 23-26 We have reported that inhaled frusemide can attenuate the acetic acid-induced cough threshold in children with asthma. 27

In conclusion, we have shown that the acetic acid-induced cough threshold is independent of non-specific bronchial hyperresponsiveness, and that the bronchoconstrictor and broncho-
dilator response does not change the acetic acid-induced cough threshold. These results indicate that acid-induced cough and broncho-
motor tone are independently regulated in children with asthma.

2 Eichenbacher WL, Bouhey HA, Sheppard D. Alteration in osmolarity of inhaled aerosols causes broncho-
3 Sheppard D, Rusk NW, Bouhey HA, Bethel RA. Mech-
anism of cough and bronchoconstriction induced by dis-
5 Townley RJ, Hopp RJ. Inhalation methods for the study of airway responsiveness. J Allergy Clin Immunol 1987;80:
111-24.
301-6.
11 Choudry NB, Fuller RW, Anderson N, Karlson J-A. Sep-
12 Coleridge JG, Coleridge HM. Afferent cap C fibre inn-
ervation of lungs and airways and its functional sig-
14 Fine JMA, Gordon T, Thompson JE, Sheppard D. The role of irritant acidity in acid aerosol-induced broncho-
15 Auffarth B, De Monchy JR, Van der Mark TBW, Postma
18 Pounsford JC, Saunders KB. Diurnal variation and ad-
19 Lowry R, Higenbottam T, Johnson T, Godden D. Inhibition
22 Pourswhen JC, Biricik MI, Saunders KB. Effect of bron-
23 Bianco S, Vaghi A, Robuschi M, Pasargikian M. Prevention of exercise-induced bronchoconstriction by inhaled furo-
24 Bianco S, Pieroni MG, Refini RM, Rattoli L, Sestini P. Protective effect of inhaled furosemide on allergen-in-
26 Shimizu T, Mochizuki H, Morikawa A, Kuroume T. Inhaled furosemide prevents ultrasonically nebulized water broncho-