Primimg effect of platelet activating factor on leukotriene C4 from stimulated eosinophils of asthmatic patients

Kunihiko Shindo, Kohei Koide, Yoshihiro Hirai, Midori Sumitomo, Motonori Fukumura

Abstract

Background – Eosinophils from asthmatic patients are known to release greater amounts of leukotrienes than normal eosinophils when stimulated by the calcium ionophore A23187. The effect of platelet activating factor (PAF) in priming eosinophils was investigated.

Methods – Eosinophils were obtained from 18 asthmatic patients and 18 healthy donors. Cells separated by the Percoll gradient were incubated with PAF (C-18) for 30 minutes and then stimulated with the calcium ionophore A23187 (2.5 μM) for 15 minutes. The amount of leukotriene C4 (LTC4) in supernatants was measured using a combination of high pressure liquid chromatography and radioimmunoassay.

Results – The mean (SD) amount of LTC4 released by eosinophils from asthmatic patients upon stimulation with the calcium ionophore A23187 alone was 27.9 (9.9) ng/10⁶ cells (n = 6). The amount of LTC4 released following stimulation with the calcium ionophore A23187 after pretreatment with PAF (1, 5, and 10 μM) was 57.9 (8.9), 75.1 (14.3), and 52.6 (10.7) ng/10⁶ cells (n = 6), respectively. Trace amounts of LTC4 (0.9-0.02) ng/10⁶ cells, (n = 6) were detected in the supernatant of the cells after stimulation by PAF alone (5 μM). The amount of LTC4 released upon stimulation by calcium ionophore A23187 alone in eosinophils from healthy donors was 10.3 (3.7) ng/10⁶ cells (n = 4). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with PAF at concentrations of 1, 5, and 10 μM were 11.9 (3.5), 17.8 (5.6), and 12.7 (5.1) ng/10⁶ cells (n = 4), respectively. Trace amounts of LTC4 (0.6-0.02) ng/10⁶ cells, (n = 4) were detected in the supernatant of the cells upon stimulation with PAF alone (5 μM). The amounts of LTC4 released upon stimulation with calcium ionophore A23187 after pretreatment with lyso-PAF at concentrations of 1, 5, and 10 μM (n = 4 or 6) were 30.8 (5.2), 22.9 (5.1), and 27.3 (4.3) ng/10⁶ cells (n = 6) from the eosinophils of asthmatic patients and 13.7 (3.3), 15.2 (4.9), and 14.7 (3.8) ng/10⁶ cells (n = 4) from the eosinophils of healthy donors.

Conclusions – The results indicated that PAF enhanced LTC4 formation by eosinophils obtained from asthmatic patients stimulated with the calcium ionophore A23187, but not those obtained from normal subjects.

Keywords: platelet activating factor (PAF), priming effect, leukotriene C4, eosinophils, bronchial asthma.

Blood and tissue eosinophilia occurs in inflammatory processes such as bronchial asthma, certain allergic diseases, and helminthic infections. However, the importance of the different factors regulating the function of eosinophils is not clearly understood. Following incubation with the calcium ionophore A23187, eosinophils generate large amounts of cysteinyl leukotrienes which are potent inducers of smooth muscle contraction and mucus production.

Platelet activating factor (PAF) was originally described as a substance released by basophils that were sensitised with IgE. PAF is secreted from human eosinophils upon stimulation with various stimuli such as C5a, FMLP, and A23187. The addition of PAF to human eosinophils induces degranulation and a transient rise in their intracellular calcium concentrations. However, the effect of PAF on priming the function of eosinophils obtained from asthmatic patients is not known. We have therefore evaluated the regulatory effect of PAF on human eosinophil function by investigating whether it enhances the formation of leukotriene C4 (LTC4) from eosinophils of asthmatic patients.

Methods

Subjects

Eighteen asthmatic men aged 23 to 67 years with a history of atopic asthma gave their informed consent to participate in the study. All patients met the criteria for the definition of asthma proposed by the American Thoracic Society, namely, a history of episodic wheezing and a greater than 20% reversibility of the resting forced expiratory volume in one second (FEV₁) after inhaling 400 μg salbutamol. Atopy was defined by the presence of a weal greater than 3 mm than that caused by the diluent control in response to a skin prick test with at least two of the following allergens: cat fur, mixed grass pollens, dog hair, feathers, a mixture of moulds, Dermapthagoides pter-
nyssinus, and *D. farinæ* (Bencard, Brentford, UK). All patients were in remission and none had taken any medication for at least four weeks before the study.

Eighteen healthy donors aged 26 to 42 years with no history of bronchial asthma or other allergy, a negative skin test, and normal pulmonary function, gave their informed consent prior to the study. None was taking any medication.

The study was approved by the ethical committee of our institution.

MATERIALS

Hanks' balanced salt solution (HBSS), 5% fetal calf serum (FCS), and piperazine-N₂N²-bis-(2-ethane-sulphonic acid) (PIEPES) were purchased from Sigma Chemical Ltd Japan (Tokyo, Japan). PAF (1-0-octadecyl-2-o-acetyl-sn-glycero-3-phosphoryl-choline; C-18), and lyso-PAF (1-0-hexadecyl-sn-glycero-3-phosphoryl-choline) were obtained from Sigma Chemical Ltd Japan (Tokyo, Japan), and 6% dextran T70 and Percoll solution were purchased from Pharmacia Fine Chemicals (Piscataway, New Jersey, USA).

COLLECTION OF BLOOD

Heparinised venous blood was collected from the subjects. Leucocytes were obtained by sedimenting five volumes of blood with one volume of 6% dextran T70 in normal saline for one hour at 37°C to allow the red cells to sediment. The dextran plasma was collected and centrifuged at 450 g for eight minutes. The cells were washed once in saline and suspended in Percoll solution (density 1.070 g/ml) with 5% FCS. The concentration of cells was adjusted to 2 x 10⁸/ml.

PERCOLL GRADIENT PREPARATION

The Percoll gradients were prepared according to the technique of Gartner and Day. Starting with the most dense solution, solutions of decreasing density were layered in a 16 ml polycarbonate tube using a peristaltic pump at low speed. Gradients consisted of 1:5 ml 1.010, 3 ml 1.000, 3 ml 1.085, and 3 ml 1.080 g/ml. The cells, suspended in Percoll 1.070 g/ml supplemented with 5% FCS as noted above, were layered on top of the gradients (1 x 10⁸ cells in a 2 ml volume per gradient). The tubes including the gradients were then centrifuged at 1600 g for 20 minutes at room temperature. Cells were harvested from the gradients by 1 ml fractions from the bottoms of the tubes. The density of each fraction was determined and was washed twice inPIPES buffer consisting of 25 mM PIPES, 110 mM NaCl, 5 mM KCl, 40 mM NaOH, and 5-4 mM glucose (pH), then counted in a haemocytometer. Cytocentrifuge smears were prepared from each fraction for differential counts and stained with Wright's stain. Those fractions with the highest purity of eosinophils were pooled and used to examine LTC4 release. More than 95% cell viability was confirmed in all experiments by the trypan blue dye exclusion method.

Each batch of 10⁸ eosinophils/ml was stimulated with A23187 (2.5 μM) for 15 minutes after pretreating with PAF (C-18) at concentrations of 1, 5, and 10 μM at 37°C for five minutes. (In our preliminary study LTC4 release from eosinophils was examined after pretreatment with PAF at concentrations between 0.1 and 20 μM which corresponds with previous findings. Eosinophils showed significant responses at PAF concentrations exceeding 1 μM, reaching a peak or plateau between 5 and 10 μM.) Reactions were stopped by immersion of the tubes in ice and the addition of three volumes of ice cold methanol. The test tubes were immediately centrifuged and the supernatant was decanted. The metabolic supernatants (containing LTC4 released by cells) were evaporated to dryness under reduced pressure and stored at −70°C until analysis.

PREPARATION FOR HIGH PRESSURE LIQUID CHROMATOGRAPHY (HPLC)

After extraction using a Sep-Pak, the residue was dissolved in the HPLC eluting solvent and injected into a reverse phase-high pressure liquid chromatograph (RP-HPLC) to collect the LTC4 fractions. The recovery rates of LTC4 with this extraction procedure were about 78%. The HPLC system was a Shimadzu LC4A (Kyoto, Japan) equipped with an SPD-2A BM spectrophotometric detector. The column was a 2.5 mm x 25 cm Microsorb RP18 (ODS) (Rainin Instrument Co Inc, Massachusetts, USA). The injection volume was 100 μl. The solvent comprised acetonitrile, methanol, water, and acetic acid (45:15:39:1). The pH of the solvent was adjusted to 5-6 using HCl and NaOH. The retention time of authentic LTC4 was about 11 minutes. The LTC4 fraction that corresponded to the retention time of authentic LTC4 was collected with a substantial band width on the chromatogram using a fraction collector.

RADIOIMMUNOASSAY (RIA)

The commercially available radioimmunoassay for LTC4, the LTC4 *H* assay reagent system produced by Amersham Corporation (Tokyo, Japan), was obtained from New England Nuclear (Tokyo, Japan) and used as described by the manufacturer with aliquots of selected HPLC fractions.

STATISTICAL ANALYSIS

Data are reported as mean (SD). The amounts of LTC4 in the supernatants of stimulated eosinophils from asthmatic patients were compared with those in healthy donors by the one factor ANOVA for repeated measures and Scheffe's *F* test. The amounts of LTC4 with or without PAF pretreatment were compared by the unpaired Student's *t* test, *p* values of <0.05 being considered statistically significant.
Table 1 Characteristics of the study groups

<table>
<thead>
<tr>
<th></th>
<th>Normal (n=18)</th>
<th>Asthmatic (n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (range) age (years)</td>
<td>35 (26-42)</td>
<td>42 (23-67)</td>
</tr>
<tr>
<td>Mean (range) blood eosinophil count (cells/mm³)</td>
<td>134 (106-188)</td>
<td>632 (298-1890)</td>
</tr>
</tbody>
</table>

Table 2 Mean (SD) formation of LTC4 induced by incubation with A23187 (2-5 μM) for 15 minutes after pretreatment of eosinophils from asthmatic patients and healthy donors for five minutes with platelet activating factor (PAF) or lyso-PAF

<table>
<thead>
<tr>
<th>Treatment</th>
<th>LTC4 formation by asthmatic eosinophils (ng/10⁶ cells, n=6)</th>
<th>LTC4 formation by healthy donor eosinophils (ng/10⁶ cells, n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No stimulation</td>
<td>0.05 (0.01)</td>
<td>0.07 (0.01)</td>
</tr>
<tr>
<td>PAF (5 μM)</td>
<td>0.9 (0.02)</td>
<td>0.6 (0.02)</td>
</tr>
<tr>
<td>lyso-PAF (5 μM)</td>
<td>0.2 (0.01)</td>
<td>0.1 (0.01)</td>
</tr>
<tr>
<td>A23187</td>
<td>27.9 (9.9)</td>
<td>10.3 (3.7)</td>
</tr>
<tr>
<td>A23187 + PAF (1 μM)</td>
<td>57.2 (8.9)*</td>
<td>11.9 (3.5)</td>
</tr>
<tr>
<td>A23187 + PAF (5 μM)</td>
<td>75.1 (14.3)*</td>
<td>17.8 (5.6)</td>
</tr>
<tr>
<td>A23187 + PAF (10 μM)</td>
<td>52.6 (10.7)*</td>
<td>12.7 (5.1)</td>
</tr>
<tr>
<td>A23187 + lyso-PAF (1 μM)</td>
<td>30.8 (5.2)</td>
<td>13.7 (3.3)</td>
</tr>
<tr>
<td>A23187 + lyso-PAF (5 μM)</td>
<td>22.9 (5.1)</td>
<td>15.2 (4.9)</td>
</tr>
<tr>
<td>A23187 + lyso-PAF (10 μM)</td>
<td>27.3 (4.3)</td>
<td>14.7 (3.8)</td>
</tr>
</tbody>
</table>

*p<0.05 versus A23187 alone.

Results
The characteristics of the study groups are summarised in table 1. Blood eosinophil counts were calculated indirectly from the total number of eosinophils in leucocyte-rich plasma. The highest purity of eosinophils from the asthmatic patients was observed at a density of 1.082 to 1.095 g/ml. Pooled fractions within this density range had a mean (SD) of 83-3 (2-4)% eosinophils with a recovery of 38-55% of the eosinophils applied to the gradient. The highest purity of eosinophils from the healthy donors (controls) was found at 1.090 to 1.095 g/ml. Pooled fractions within the range of 1.086 to 1.095 g/ml showed 86-8 (1-8)% eosinophils with a recovery of 40-56% of those applied to the gradient. Thus, the purity of eosinophils did not differ significantly between samples from the asthmatic patients and the controls. Cell viability was confirmed in each study to exceed 95%.

Discussion
The amount of LTC4 in the eosinophils from the asthmatic patients produced by A23187 stimulation following pretreatment with PAF (C-18) at a concentration exceeding 1 μM was significantly greater than the amount of LTC4 produced by A23187 alone in the eosinophils from both the asthmatic patients and healthy donors. The enhancement was significantly greater in the eosinophils from the asthmatic patients than in those from healthy donors at concentrations exceeding 1 μM.

Fukuda et al.19 showed that hypodense eosinophils (<1.082 g/ml) increase in the blood of patients with bronchial asthma and the mean (SD) of peak eosinophil density in the asthmatic group was 1.0827 (0.0035), significantly lower than that of normal subjects (p<0.005). Hypodense eosinophils are likely to be important in the formation of chemical mediators that contribute to the development of bronchial asthma. Ideally, eosinophils that are within the density range 1.080 to 1.082 g/ml would best represent the function of these cells from asthmatic patients. However, fractions from this range contain many neutrophils that cannot be easily removed. Thus, we used cells within the density range 1.082 to 1.095 g/ml from the asthmatic patients and within the range 1.086 to 1.095 g/ml from the healthy donors.

Our results confirm previous work showing that PAF alone can stimulate the release of cysteinyi leukotrienes from human eosinophils.20 This is similar to results in chopped rat lungs where incubation with PAF causes leukotriene production.21 In the present study trace amounts of LTC4 were detected in the supernatants of eosinophils stimulated with 5 μM PAF alone, amounts that do not explain
the enhancement of A23187-induced LTC4 production by pretreatment of eosinophils from atopic patients with PAF at concentrations exceeding 1 μM.

Previous studies have demonstrated priming effects of PAF on eosinophil function, as well as priming effects of interleukin-3 and interleukin-5 on LTC4 production by eosinophils. The mechanism of the priming effect of PAF observed in the present study is not clear. However, addition of PAF to human eosinophils has been shown to result in degranulation and a transient increase in cellular free Ca2+ concentration. The latter action at least may be important in the priming effect of PAF on LTC4 release.

PAF (1 μM) has been shown by Bruynzeel et al to enhance the formation of LTC4 induced by A23187 in eosinophils isolated from healthy volunteers. In the present study pretreatment with PAF (1 μM) did not enhance it significantly, although it showed an increase. There are several differences between their methods and ours, so it is difficult to make a direct comparison of the effects of 1 μM PAF between the two experiments.

Interestingly, the effect of pretreatment with PAF was significantly greater on LTC4 formation in eosinophils from the asthmatic patients than in eosinophils from the healthy volunteers. The clinical efficacy of an orally active PAF antagonist, WEB 2086, a powerful antagonist of inhaled PAF, has recently been evaluated in asthma and did not reduce the requirement for inhaled corticosteroid in atopic asthmatic patients. Although the precise role of PAF in the development of bronchial asthma remains controversial, it remains a potentially important mediator. Our results suggest that PAF may contribute to the pathogenesis of bronchial asthma via its enhancement of LTC4 release from eosinophils.

It is not clear why the effect of PAF pretreatment was greater at 5 μM than at 10 μM in eosinophils from both asthmatic patients and healthy volunteers. Further examination is required to explain the reason.

The importance of leukotrienes in asthma has been demonstrated. The formation and release of LTC4 is increased in eosinophils from asthmatic patients, a characteristic that may be important in the pathophysiology of asthma. Our observation that PAF enhanced A23187-induced LTC4 release from the eosinophils of asthmatic patients further emphasises the importance of LTC4 in the development of asthma.

We thank Dr M Tanaka for reviewing the manuscript.

