Differences in aerodynamic particle size distributions of innovator and generic beclomethasone dipropionate aerosols used with and without a large volume spacer

C J Kenyon, N J Dewsbury, S P Newman

Abstract

Background – The equivalence of generic beclomethasone dipropionate (BDP) formulations with their innovator counterpart must be demonstrated if generic formulations are to be used. This study has examined the aerodynamic particle size distributions of both innovator and generic formulations of BDP and the effect of a large volume spacer (Volumatic) on these distributions.

Methods – Aerosol clouds of three formulations of BDP delivering 250 μg per metered dose were characterised using a high precision multistage liquid impinger, and the amount of drug in different particle size bands was determined by spectrophotometric assay.

Results – The mean (SD) respirable fractions of Becloforte, Beclazone, and Filair without the spacer (n=10) were 24.1 (2.1)%, 23.1 (2.7)%, and 23.0 (2.1)% respectively; however, the ratio of deposition on stage 4 of the impinger to that on stage 3 was lower for Beclazone and for Filair than for Becloforte, implying a smaller proportion of fine particles for the generic products. When the three products delivered via the Volumatic spacer device were compared, the respirable fraction for Becloforte (n=10) was 25.0 (4.0)%, but those of Beclazone (n=10) and Filair (n=11) were 16.0 (1.9)% and 14.6 (3.4)% respectively; however, the ratio of deposition on stage 4 of the impinger to that on stage 3 was lower for Beclazone and for Filair than for Becloforte, implying a smaller proportion of fine particles for the generic products. The same rank order for the other two products.

Conclusions – These in vitro findings suggest that the particle size distributions of the two generic formulations of BDP are not equivalent to that of the innovator product. Some differences in particle size distributions might not have been detected by a twin impinger. Clinical testing would be required to assess the therapeutic equivalence of innovator and generic corticosteroid products used with or without spacer devices.

(Thorax 1995;50:846–850)

Keywords: beclomethasone dipropionate, spacer device, particle size, generic products.
when delivered through a Volumatic spacer were also examined.

Methods

TEST DEVICE

A high precision multistage liquid impinger (HPMLI, Copley Instruments)14 was used to fractionate each formulation according to aerodynamic diameter. The device consists of a "throat" (a 90° bend) and four impaction stages. The aerodynamic diameters of particles trapped in each section of the impinger were approximately as follows: throat, >25 μm; stage 1, 13–25 μm; stage 2, 6.8–13 μm; stage 3, 3.1–6.8 μm; stage 4, <3.1 μm. Although stage 4 is intended to trap all particles smaller than 3.1 μm, a Dreschel wash bottle containing methanol was placed downstream of stage 4 to act as a final filter. The same HPMLI was used throughout the investigation, operated at a flow rate of 60 l/min using a vacuum pump.

TEST PROCEDURES

High dose corticosteroid inhalers (Becloforte, Beclazone 250, and Filair 250) were used, each inhaler delivering a nominal metered dose of 250 μg BDP. The particle size distribution from 10 canisters of each brand was first assessed using the standard MDI actuator alone. Subsequently, particle size following delivery through the Volumatic was measured in three phases, performed approximately three months apart. Phase I was a pilot study that examined the particle size distribution of Becloforte alone, whilst phase II consisted of a full assessment of the three formulations. In both phases the experiment involved measurements on 10 replicate canisters, except for phase II measurements on Filair when using the Volumatic where 11 replicates were tested. Phase III again examined all three formulations, each experiment involving five canisters of each product.

Forty metered doses, sufficient to give an adequate ultraviolet absorbance, were fired into the HPMLI in each study. In order to ensure equivalent drug content in each actuation15 each MDI was primed using a different actuator prior to use and the first 10 doses were discarded. MDIs were shaken before firing each dose. When testing MDIs alone the vacuum pump was allowed to run continuously as the doses were fired. For the Volumatic, single doses were discharged into the device and these were withdrawn immediately after firing by switching on the vacuum pump. Each spacer device was washed with water and allowed to air dry before use. The Volumatic spacer possesses a one-way valve which allows air to be drawn through the chamber on inspiration but prevents air passing back into the chamber on expiration. In order to simulate the clinical situation and ensure that the inhalation valve was open, the spacers were tilted slightly during the firing and withdrawal of doses. Each component in the system was then thoroughly washed out individually with methanol. New canisters, actuators, and spacers were used for each experiment in each phase of the study and all test materials were supplied by Astra and Hanburys Ltd from randomly selected batches.

The concentration of BDP was determined using an ultraviolet spectrophotometer (Pye Unicam P8735) measuring the absorbance peak at 238 nm. Calibration curves were constructed for the drug to establish a linear working range. The mass of drug in each sample (μg) was the product of the concentration of drug (μg/ml) in each sample and the final volume of the solution. In this way the mass of drug on the actuator, the spacer (where applicable), the four impaction stages, and the final filter was determined. The distribution of drug in each zone was expressed as a percentage of the total quantity of drug recovered. The respirable fraction of a formulation was defined as the percentage of drug recovered from stage 3, stage 4, and the final filter (particles with an aerodynamic diameter <6.8 μm). Two operators were responsible for the experimental procedures and data collection in phases I and II of the study and one of these two individuals performed all the technical procedures for phase III. Quality control of the data analysis was performed by a third investigator throughout all three phases of the study.

DATA ANALYSIS

The Wilcoxon rank sum test16 was used to assess whether the observed differences in particle size distributions between products were statistically significant. A p value of ≤0.05 was taken to indicate significance.

Results

The particle size distributions and total drug recoveries for the three products are shown in Table 1. The mean (SD) respirable fractions of Becloforte, Beclazone, and Filair were 24.1 (2.1–3)%; 23.1 (2.7–3)% and 23.0 (2.1–3)% respectively (fig I). However, the Becloforte formulation comprised a higher percentage of particles of <3.1 μm in diameter (recovered from stage 4) with a smaller percentage of particles lying between 3.1 μm and 6.8 μm in diameter (recovered from stage 3) In the Filair formulation the opposite was the case. Beclazone again had a unique particle size distribution; in this case a similar percentage of the dose was deposited on both stages 3 and 4 of the HPMLI. The mean (SD) ratio of the deposition on stage 4 of the impinger to that

Table 1: Mean (SD) percentage distribution of metered dose and total drug recovery for studies without the spacer device

<table>
<thead>
<tr>
<th></th>
<th>Becloforte</th>
<th>Beclazone</th>
<th>Filair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator</td>
<td>5.5 (1.3)</td>
<td>4.7 (0.9)</td>
<td>7.2 (1.2)</td>
</tr>
<tr>
<td>Throat</td>
<td>66.3 (1.9)</td>
<td>65.2 (2.8)</td>
<td>62.7 (2.5)</td>
</tr>
<tr>
<td>Stage 1</td>
<td>1.4 (0.4)</td>
<td>2.5 (0.7)</td>
<td>2.2 (0.9)</td>
</tr>
<tr>
<td>Stage 2</td>
<td>2.6 (0.6)</td>
<td>4.7 (0.8)</td>
<td>5.0 (1.6)</td>
</tr>
<tr>
<td>Stage 3</td>
<td>9.6 (1.6)</td>
<td>11.0 (1.2)</td>
<td>14.4 (2.4)</td>
</tr>
<tr>
<td>Stage 4</td>
<td>14.4 (1.9)</td>
<td>12.0 (2.4)</td>
<td>8.5 (1.9)</td>
</tr>
<tr>
<td>Final filter</td>
<td>0.1 (0.1)</td>
<td>0.1 (0.1)</td>
<td>0.1 (0.0)</td>
</tr>
<tr>
<td>Total drug recovery (μg)</td>
<td>10 862 (472)</td>
<td>10 859 (599)</td>
<td>10 697 (552)</td>
</tr>
</tbody>
</table>
fractions of 25·0 (4·0)% , 16·0 (1·9)% , and 14·6 (3·4)% for Becloforte, Beclazone, and Filair, respectively. The mean respirable fraction obtained for Becloforte in phase II of the study was significantly greater (p<0·01) than that obtained for either of the two generic products. Phase III resulted in respirable fractions of 31·0 (7·6%), 27·0 (3·9%), and 22·2 (8·3)% for Becloforte, Beclazone, and Filair, respectively. Respirable fractions in phases II and III are shown in fig 3. The significantly higher mean respirable fraction observed for Becloforte in phase II was not repeated during phase III of the study, although only five replicates were performed in this phase of the investigation compared with the 10 or 11 performed for phase II. Fourteen of the 15 impinger runs performed for Becloforte in phases II and III resulted in respirable fractions exceeding 20% of the metered dose, compared with only three of 16 runs for Filair. The stage 4/stage 3 ratios for the three products for studies with the Volumatic had the highest mean value for Becloforte (phase II: Becloforte 1·60 (0·36), Beclazone 1·51 (0·16), and Filair 1·39 (0·26); phase III: Becloforte 1·79 (0·29), Beclazone 1·64 (0·14), and Filair 1·37 (0·30)), but this ratio did not differ significantly between the three products.

Mean total drug recoveries (nominal 40 doses of 250 μg BDP) ranged from 9795 μg to 10 861 μg, suggesting that the inhalation devices and the impinger had been completely washed out prior to drug assay.

Table 2 Mean (SD) percentage distribution of metered dose and total recovery for studies with the Volumatic

<table>
<thead>
<tr>
<th>Product</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actuator</td>
<td>Spacer</td>
<td>Throat</td>
<td>Stage 1</td>
<td>Stage 2</td>
<td>Stage 3</td>
</tr>
<tr>
<td></td>
<td>5·0 (0·8)</td>
<td>5·5 (0·9)</td>
<td>4·6 (0·6)</td>
<td>4·8 (0·8)</td>
<td>4·9 (1·8)</td>
<td>5·3 (1·4)</td>
</tr>
<tr>
<td></td>
<td>74·2 (4·3)</td>
<td>65·4 (3·7)</td>
<td>58·8 (8·1)</td>
<td>74·5 (2·1)</td>
<td>62·0 (3·9)</td>
<td>72·3 (2·7)</td>
</tr>
<tr>
<td></td>
<td>0·6 (0·2)</td>
<td>1·6 (0·5)</td>
<td>1·3 (0·3)</td>
<td>1·9 (0·5)</td>
<td>1·3 (0·2)</td>
<td>1·3 (0·9)</td>
</tr>
<tr>
<td></td>
<td>0·7 (0·2)</td>
<td>0·9 (0·4)</td>
<td>1·5 (0·2)</td>
<td>0·8 (0·1)</td>
<td>1·3 (0·2)</td>
<td>4·7 (2·0)</td>
</tr>
<tr>
<td></td>
<td>1·6 (0·2)</td>
<td>1·7 (0·6)</td>
<td>2·9 (0·6)</td>
<td>2·1 (0·4)</td>
<td>3·6 (0·3)</td>
<td>1·9 (0·7)</td>
</tr>
<tr>
<td></td>
<td>6·0 (1·2)</td>
<td>9·5 (0·7)</td>
<td>11·3 (3·3)</td>
<td>6·3 (0·9)</td>
<td>10·2 (1·8)</td>
<td>6·2 (1·9)</td>
</tr>
<tr>
<td></td>
<td>11·8 (2·5)</td>
<td>15·3 (3·7)</td>
<td>19·7 (4·7)</td>
<td>9·5 (1·3)</td>
<td>16·6 (2·4)</td>
<td>8·3 (1·9)</td>
</tr>
<tr>
<td>Total recovery</td>
<td>10 323 (405)</td>
<td>10 503 (342)</td>
<td>10 795 (742)</td>
<td>9914 (509)</td>
<td>10 188 (409)</td>
<td>10 097 (938)</td>
</tr>
</tbody>
</table>
Discussion

Our data showed significant differences between the aerodynamic particle size distribution of Becloforte and those of the two generic products, despite the three formulations being intended for use interchangeably. These data suggest that each formulation possesses its own unique delivery characteristics. When used without the Volumatic the reduced ratio of particles in stage 4 of the impinger to those in stage 3 for the two generic products would probably result in a poorer penetration of particles into small peripheral airways. This difference would not have been detected using a twin impinger, which is a device widely employed by the pharmaceutical industry to obtain particle sizing data.\(^{11,13}\) Twin impingers operate by dividing the dose emitted from an MDI into particles which fall within a theoretical "respirable" range and those which do not, and further characterisation of the size distribution of respirable particles is not possible. However, our data have suggested that by measuring only the respirable fraction and not the distribution of particles within the respirable fraction it is not possible to fully characterise the aerosol cloud. We would suggest the use of multistage liquid impingers or cascade impactors such as the Andersen sampler which are already recommended by some regulatory authorities for testing pharmaceutical products.

Our data also showed a significant difference between the aerodynamic particle size distributions of Becloforte and the two generic products when delivered through a large volume spacer. In vitro evaluation of a variety of spacer devices has been performed previously\(^{17-19}\) and, in agreement with the present investigation, these studies have found that spacers may either enhance or reduce the respirable fraction. However, the Volumatic is designed for use with Becloforte and the present study suggests that changes in performance can occur if different aerosol formulations are delivered through the same spacer. Lee\(^{20}\) has also examined the delivery through the Volumatic spacer of the same three BDP products as those used in the present study. That study showed mean respirable fractions for Becloforte, Beclazone, and Filair of 26-4%, 23-3%, and 12-9%, respectively, although the data were obtained using the twin impinger and only mean values of respirable fraction were quoted, giving no indication of the scatter of the data. In a recently published letter\(^{13}\) the same author claims to have new twin impinger results, suggesting that the respirable fractions of Becloforte and Beclazone are, in fact, similar but the limited data presented were difficult to interpret and a fuller publication is awaited. When all the data from phases II and III of the present study using the Volumatic are pooled, the mean values of respirable fractions for the three products are 27-0%, 19-7%, and 17-1%, and these data therefore show the same trend as that reported initially by Lee.\(^{20}\) The data from phase I of our study showed a respirable fraction of only 17-8% for Becloforte, but no direct comparison against the other two products was made in that phase of the study.

It was interesting to note that repeat measurements on the same formulation delivered via the Volumatic resulted in different populations of data. The reason for the differences in the data sets is unclear. The total drug recovered from the test system was in good agreement with the expected value throughout the investigation and it was therefore unlikely that these differences were a result of failure to recover all the BDP from the system. In addition, considerable care was taken to ensure that the same HPLC was used throughout the investigation and the number of operators was kept to a minimum to reduce operator variability. It is possible, however, that interbatch variation between inhalers used in the three phases of the investigation contributed to the differences observed.

Recent evidence suggests that drug delivery from spacer devices is critically affected by static charge.\(^{10,22}\) The respirable fraction generated through spacer devices has been shown to be significantly altered by simple procedures including lining the spacer with an antistatic spray\(^{13}\) and wiping the external surfaces of the device with either an antistatic cloth\(^{22}\) or a damp cloth (unpublished observations). In an attempt to minimise differences resulting from static charge in the system each spacer was washed and air dried before use, and was handled in an identical manner during testing. However, the three phases of the study with the Volumatic were performed approximately three months apart, and it is possible that variations in static charge associated with different climatic conditions were responsible, at least in part, for the populations of data observed. For this reason, testing in phase III was performed randomly; one of each of the three products was tested on each day and testing times for each product were rotated throughout the experiments.

While we cannot exclude the possibility that the differences observed between the products when delivered via the Volumatic arise from random electrostatic charge effects, the rank order of the mean respirable fractions for the three products was the same in phases II and III, and was the same as that observed by Lee,\(^{20}\) suggesting that the differences between the products are real and are not due to experimental variations. The rank order of stage 4/stage 3 ratios in experiments performed without the Volumatic was the same as the rank order of respirable fractions in experiments performed with the Volumatic. Lee and colleagues did suggest that the poor physical fit between the actuator and spacer may have contributed to the low respirable fraction observed for Filair. However, the operators in the present study did not experience problems with the physical fit between the two devices but, nevertheless, observed a low respirable fraction for Filair.

In order to substitute a generic product for the innovator, equivalence of the formulations must be proven and the findings presented here indicate that, when delivering BDP through a Volumatic spacer device, the generic products show sig-
significant differences in particle size distributions when compared with Becloforte. However, it is not possible to conclude from the present study whether or not such differences between the formulations would have a clinically significant effect. Therapeutic equivalence of the three products can only be assessed by comparative clinical trials which have not been published to date.

This study was supported by a grant from Allen and Hanburys Ltd.