A case of *Acinetobacter calcoaceticus* pneumonia

Hayati Bilgiç, E Serdar Akin, Yücel Taşan, Kudret Ekiz, Olguç Seber

Abstract

A case of community acquired pneumonia with *Acinetobacter calcoaceticus* is presented. *Acinetobacter* must be considered in the differential diagnosis of Gram negative cocccobacillary pneumonia.

(Thorax 1995;50:315–316)

Keywords: *Acinetobacter* infection, pneumonia.

*Acinetobacter* has been isolated from numerous environmental and human sources. Up to 25% of healthy adults exhibit cutaneous colonisation and 7% have transient pharyngeal colonisation.1,2 It is the most common Gram negative organism persistently carried on the skin of hospital personnel and was found to colonise 45% of in-patient tracheostomy sites.1,4,7 Acinetobacter has been described as the causative agent of supplicative infections in many organ systems.1-7 Usually acknowledged to be opportunistic in patients with altered host defences, *Acinetobacter* infections have been reported in otherwise healthy hosts.27

Case report

A 20 year old white man was admitted to our clinic in July 1990 complaining of shortness of breath, fever, cough, haemoptysis, and vomiting. He had smoked 20 cigarettes/day for five years. He had no history of alcohol consumption, drug abuse or systemic illness that could have predisposed him to opportunistic infection. On physical examination he was comatose with a fever of 39-7°C, heart rate of 140 beats/min, blood pressure of 110/50 mm Hg, and a respiratory rate of 26/min with shallow respiration and fine bibasilar rales. Chest radiography showed extensive bilateral infiltrates with areas of consolidation involving most of the right lung. The patient was hypoaemic (PaO2 7.1 kPa breathing air). Urine analysis was normal. Cultures of blood urine, and cerebrospinal fluid were sterile.

Gram stains of the initial throat culture and transtracheal aspirates were misinterpreted as *Staphylococcus aureus*. Sputum culture grew *Gram negative bacilli*, *Klebsiella pneumoniae*. Transtracheal aspirates were cultured for anaerobes, mycoplasma, and *Acinetobacter*.

Initially the patient was treated with intravenous benzylpenicillin (10 million units six hourly) and cephalothin sodium (1 g 12 hourly). After two days of treatment radiological progression was seen. On the third day *Acinetobacter* was identified in cultures of the transtracheal aspirate. The case was accepted as *Acinetobacter pneumonia* because *Klebsiella* only grew in the first sputum specimen and not in the subsequent sputum cultures nor in the transtracheal aspirate. In addition, *Acinetobacter* was isolated from the transtracheal aspirate which is a more specific and sensitive sample than sputum culture. Antibiotics were changed to intravenous ceftriaxone 2 g 12 hourly and amikacin 500 mg 12 hourly (according to the result of antibiotic resistance tests in vitro) and the patient subsequently made a full recovery in 10 days.

Discussion

Community acquired *Acinetobacter* pulmonary infections generally occur in patients with decreased host defences, including alcoholics,
tobacco abusers, patients with renal failure, and those with underlying pulmonary disease. Nosocomial Acinetobacter pneumonias are often associated with endotracheal intubation or tracheostomy, prior antibiotic therapy, residence in an intensive care unit, or recent surgery.2 3 9 Nosocomial spread in the intensive care unit has been attributed to ventilatory equipment and to colonised personnel.2

Community acquired Acinetobacter pneumonia is a fulminating disease. More than half the patients develop hypotension and shock within 24 hours, and nearly all are profoundly hypoxaemic. The chest radiograph may reveal either lobar consolidation or bronchopneumonia, but progression to diffuse, bilateral involvement often occurs rapidly. Pleural effusions occur in half and many of these are purulent.10

Mortality from community acquired Acinetobacter pneumonia is close to 50%, with death often occurring in the first few days of the illness.10 Secondary bacteraemia, septic shock, and empyema are associated with a poor prognosis.2 4 10

In two of three cases of Acinetobacter pneumonia in foundry workers, iron particles and mixed dust pneumonia was found in the lungs at postmortem examination. This suggested that chronic exposure to such particles may increase the susceptibility to infection by this organism.3

In vitro susceptibility testing generally reveals that there is no antimicrobial agent to which Acinetobacter is uniformly sensitive. However good responses are recorded to the combination of imipenem and piperacillin.7 Many mild to moderately severe infections will respond to (effective) single antibiotic treatment. However, in serious infections treatment should be based on the result of susceptibility testing and the contribution of a β-lactam (piperacillin, ticarcillin, cefazidime) and an aminoglycoside.12 As with other Gram negative bacillary pneumonias, serious pulmonary infection should be treated for at least three weeks.10

Because of the acute onset of symptoms, extensive and progressive bilateral infiltrates, occurrence in the summer, and the dramatic clinical presentation, we interpreted our case as one of a community acquired pneumonia. Misinterpretation of the initial Gram stain of the transtracheal aspirate as Staphylococcus caused a delay in starting correct treatment. In spite of this, no therapeutic advantages for third generation cephalosporins have been reported. We achieved a rapid clinical improvement with an aminoglycoside (aminoglycoside (amikacin)) and a third generation cephalosporin (ceftriaxone), chosen on the results of susceptibility testing.

The value of transtracheal aspiration in isolating the causative organism when clinical findings are not consistent with pathogens isolated from sputum cultures in an immunocompromised host or in those unable to expectorate is emphasised.