Necrotic, ulcerative bronchiitis following heart-lung transplantation

We acknowledge Dr Andrew Turner, Consultant Virologist, Public Health Laboratory, Withington Hospital, Manchester for his help in assessing the EBV serology. We also wish to thank Dr. J Alper Thomas, Senior Clinical Lecturer of the London School of Hygiene and Tropical Medicine for completing the in situ hybridisation studies.


Obliterative bronchiolitis caused by multiple tumourlets and microcarcinoids successfully treated by single lung transplantation

N Sheerin, N K Harrison, M N Sheppard, D M Hansell, M Yacoub, T J H Clark

Multiple tumourlets arising in the lung are usually regarded as benign although they can show malignant potential. They share a similar phenotype to carcinoid tumours, both showing neuroendocrine features but no cytological evidence of malignancy. Unlike true carcinoids they are rarely of clinical significance, although a recent report suggests that they may be associated with airways obstruction. We describe a patient in whom multiple pulmonary tumourlets and microcarcinoids occurred within the small airways resulting in a progressive obliterative bronchiolitis and severe airflow limitation. This was successfully treated by single lung transplantation.

Keywords: obliterative bronchiolitis, tumourlets, single lung transplantation.

Case report
A 42 year old white woman presented with a 10 year history of progressive airflow limitation. She had previously smoked a total of five pack-years. Pulmonary function tests showed: forced expiatory volume in one second (FEV1) (%) predicted 840 ml (28%), forced vital capacity (FVC) 3160 ml (89%), peak expiratory flow

Abstract
Histological examination of a lung removed at transplantation revealed multiple peripheral tumourlets and microcarcinoids in close association with bronchioles causing an obliterative bronchiolitis. This was an unexpected finding but explained the progressive airflow limitation which characterised the patient's clinical course.

(Thorax 1995;50:207-209)
rate (PEFR) 155 l/min (37%), residual volume (RV) 2950 ml (143%), total lung capacity (TLC) 6200 ml (105%), carbon monoxide transfer factor (Tlco) 6.64 mmol/min/kPa (73%), carbon monoxide transfer coefficient (Kco) 1.82 mmol/min/kPa/1 (108%). The chest radiograph showed hyperinflated lungs with several 5 mm opacities in the right lung. Fibreoptic bronchoscopy was normal and a ventilation/perfusion scan showed multiple small matched defects. Her disease did not respond to bronchodilator or oral corticosteroid therapy. She was considered to have an obliterative bronchiolitis with "benign" pulmonary opacities, possibly related to old pulmonary tuberculosis, and over the next 11 years her condition remained stable.

At the age of 53 she returned with a six month history of severe breathlessness on exertion. She had no history of viral pneumonia or rheumatoid disease. Her only medication was metoprolol for hypertension. On physical examination her chest was hyperexpanded and there were bilateral basilar inspiratory crackles. The haemoglobin concentration was 15·3 g/dl, white cell count 6·5 × 10⁹/l with a normal differential count, and erythrocyte sedimentation rate was 4 mm/hour. The serum α₁-antitrypsin level was 2·1 g/l (normal range 0·8–3·0 g/l) and an autoantibody screen was negative. The chest radiograph showed hyperinflated lungs and multiple 5 mm opacities. Computed tomographic scanning showed minimal bronchial wall thickening and dilatation, and attenuation of the pulmonary vessels suggestive of obliterative bronchiolitis together with multiple nodules in both lungs. There was no evidence of emphysema. Repeat lung function tests showed severe airflow limitation: FEV₁, 480 ml (15%), FVC 1990 ml (56%), PEFR 141 l/min (33%), RV 3670 ml (177%), TLC 5820 ml (93%), Tlco 4·63 mmol/min/kPa (50%), and Kco 1·55 mmol/min/kPa/1 (91%). There was no improvement following a further trial of oral corticosteroids.

In view of this decline the patient was assessed for single lung transplantation and underwent successful surgery in June 1991. The resected lung contained multiple peripheral parenchymal nodules varying from 2 mm to 10 mm in diameter. Microscopically these consisted of central areas of fibrosis surrounded by islands of uniform cells extending into surrounding lung. The cells were positive on immunostaining for neuron specific enolase, chromogranin A, bombesin, and calcitonin, confirming their neuroendocrine origin (fig 1). Many of the nodules were adjacent to pulmonary arterioles and appeared to have obliterated the accompanying bronchioles by inducing fibroblast proliferation and connective tissue deposition. There was no evidence of lymph node metastases.

The patient remains well two years after transplantation. Repeat computed tomographic scanning of the thorax confirms that the pulmonary nodules persist in the right lung but there is no evidence that these have progressed during immunosuppressive therapy (fig 2). There is also no evidence that nodules have developed in the transplanted lung, nor is there evidence of rejection.

Discussion
Carcinoid tumours account for 1–6% of primary lung tumours and usually occur as solitary lesions in proximal bronchi. Those occurring peripherally may be multiple but are usually an asymptomatic radiological finding. The term "carcinoid tumourlet" was first used by Whitwell to describe microscopic collections of neuroendocrine cells bordering bronchial airspaces in the peripheral lung. They generally measure less than 4 mm in diameter, are multiple, and occur only in the lung periphery, while carcinoid tumours are more likely to be central, solitary, and measure more than 1 cm. However, lesions between 4 mm and 10 mm in diameter have been described and confusion about their nomenclature remains. Confusingly, multiple lesions of less than 2 mm with cervical lymph node metastases have also been labelled carcinoid tumours. We prefer to call lesions between 4 mm and 10 mm...
“microcarcinoids” as originally described by Gould et al.7

Tumourlets are rare, being found in only 17 of 7800 necropsies8 and in 22 of 2300 lungs resected surgically. They are usually multiple and discovered as an incidental finding on light microscopy. Although more common in patients with chronic lung disease such as bronchiectasis, they can occur in normal lung.2 Morphologically they resemble carcinoid tumours and rarely the two conditions occur together.

There have been few reported cases in which tumourlets have given rise to symptoms. Skinner and coworkers reported a 20 year old man who presented with diarrhoea, miliary shadowing on chest radiography, and a mild restrictive defect on lung function tests. Open lung biopsy revealed multiple carcinoid tumourlets.9 Millar and coworkers described a 53 year old woman who presented with cough, haemoptysis, multiple pulmonary nodules up to 12 mm in diameter, and a mild mixed restrictive and obstructive ventilatory defect. Open lung biopsy revealed nodules of proliferating neuroendocrine cells surrounded by fibrous tissue in relation to and distorting bronchioles.10 In both these patients the disease ran an apparently benign course with metastatic spread occurring only to local lymph nodes.

Recently a series of six patients with idiopathic diffuse hyperplasia of neuroendocrine cells and airways obstruction has been reported by Aguayo et al.3 All presented with breathlessness but none had any physical signs. Pulmonary nodules were apparent on chest radiography in four. In two others the chest radiograph was normal but a computed tomographic scan showed diffuse bronchial wall thickening and areas of hyperlucency suggestive of gas trapping. In one the computed tomographic scan also showed multiple (<10 mm) pulmonary nodules. All these patients had evidence of airflow limitation on lung function tests but there was no consistent pattern to the lung volumes or carbon monoxide transfer factor, which presumably vary with the relative degrees of fibrosis and gas trapping. In four of these patients the condition had remained stable after a mean follow up of seven years. The remaining two developed progressive airflow limitation and attempts to treat this with chemotherapy were unsuccessful.

These authors suggested that the obliterative bronchiolitis was caused by the proliferating endocrine cells and we would propose a similar mechanism in the present case. Two lines of evidence support this theory. Firstly, on microscopic scrutiny of the lung we did not observe obliterative bronchiolitis in the absence of neuroendocrine proliferations. Secondly, it is known that neuropeptides such as bombesin, secreted by neuroendocrine cells, have the potential to activate human lung fibroblasts in vitro.

As far as we are aware, our patient is the first to be successfully treated by single lung transplantation which is, at present, the only viable therapy when this condition is progressive. In the past this operation was only performed on patients with fibrotic lung disease. However, it has now been successful in selected patients with obstructive lung disease and pulmonary vascular disease.

It may be possible to make the diagnosis in such patients by immunostaining of a transbronchial biopsy sample. This was not performed in our patient because of the risk of pneumothorax. Similarly, open lung biopsy is invasive and may not be advisable in patients with severe airflow limitation. The computed tomographic appearances we describe are similar to one of the patients reported by Aguayo et al. The constellation of computed tomographic signs of obliterative bronchiolitis, together with multiple pulmonary nodules, should suggest the diagnosis of tumourlets and microcarcinoids.