Effect of short term hormone replacement in the treatment of obstructive sleep apnoea in postmenopausal women

Peter A Cistulli, David J Barnes, Ron Grunstein, Colin E Sullivan

Abstract
Background - Women appear to be increasingly susceptible to snoring and sleep disordered breathing after the menopause. This observation, coupled with the considerable sex difference in sleep apnoea, may be explained on the basis of a protective effect of female hormones. This study was carried out to determine whether hormone replacement therapy has a role in the management of obstructive sleep apnoea in postmenopausal women.

Methods - The effect of short term (mean (SE) 50 (3) days) hormone replacement therapy with either oestrogen alone or in combination with progesterone on sleep disordered breathing was investigated in 15 postmenopausal women with moderate obstructive sleep apnoea. The effect of treatment on the ventilatory response to hypoxia and hypercapnia was assessed in 10 patients.

Results - There was no reduction in the clinical severity of obstructive sleep apnoea after hormone treatment despite an increase in the serum oestrogen level from 172 (23) to 322 (33) pmol/l. There was a small but clinically insignificant reduction in the apnoea/hypopnoea index during REM sleep from 58 (6) to 47 (7). There was no difference in response between the oestrogen only group and the oestrogen plus progesterone group. Hypercapnic ventilatory responsiveness did not change with hormone treatment, but an increase in hypoxic ventilatory responsiveness was observed.

Conclusions - These data indicate that short term hormone replacement is unlikely to have an effective role in the clinical management of postmenopausal women with obstructive sleep apnoea. The observed reduction in the apnoea/hypopnoea index during REM sleep, however, suggests that longer term treatment, or the use of higher doses, may have an effect.

(Thorax 1994;49:699-702)

Sleep disordered breathing is less common in women than men until after the menopause.1 The reason for this sex difference, and the increased prevalence of sleep disordered breathing in postmenopausal women, is unknown, but hormonal factors may explain these phenomena. Female sex hormones may protect against the development of sleep disordered breathing, whilst androgens may promote the disorder. The increased prevalence of sleep apnoea in postmenopausal women may therefore be related to the decline in oestrogen and progesterone levels after the menopause. In support of this, progestin and oestrogen have been shown to reduce mild sleep disordered breathing in healthy postmenopausal women.2 A previous case report described a considerable improvement with combined hormone treatment in a postmenopausal woman with obstructive sleep apnoea.3

The aim of this study was to determine whether short term hormone replacement in clinically conventional doses reduces more severe obstructive sleep apnoea in postmenopausal women. We also measured ventilatory responses to hypoxia and hypercapnia in a subgroup of patients to investigate the effects of oestrogen and progesterone on chemosensitivity, since this could be an explanation for a reduction in sleep disordered breathing.

Methods
Fifteen consecutive postmenopausal women who presented to our Sleep Disorders Centre with obstructive sleep apnoea were studied. All subjects gave informed consent to the study which was approved by the ethics committee of our institution. They had a mean (SE) age of 60 (1) years, mean body mass index of 32.2 (1.5) kg/m², mean neck circumference of 37 (1) cm, mean waist size of 103 (4) cm, and mean hip size of 112 (3) cm. Menopause was defined as the absence of menstrual periods for more than six months, and was confirmed by the presence of low oestrogen levels and elevated luteinising hormone and follicle stimulating hormone levels.

Subjects underwent baseline nocturnal polysomnographic recording and ventilatory response tests (in a subgroup), and were subsequently commenced on hormone replacement therapy. These studies were repeated after 50 (3) days of treatment. Hormone replacement therapy consisted of oestrogen alone in those patients who had previously undergone hysterectomy (n = 6), and oestrogen plus progesterone in the rest (n = 9). Oestrogen treatment consisted of conjugated equine oestrogens (0.625 mg/day), oestradiol valerate (1 mg/day), or transdermal oestradiol (8 mg/week). Progesterone was administered as medroxyprogesterone acetate (2.5-10 mg/day).

Standard nocturnal polysomnography was
performed as previously described by our laboratory. Calculated respiratory variables were the apnoea/hypopnoea index (number of apnoeas and hypopnoeas per hour of sleep), apnoea duration, and minimal oxygen saturation during apnoeas. Obstructive sleep apnoea was defined as an apnoea/hypopnoea index > 5. Apnoeas were defined as cessation of airflow for at least 10 seconds. Hypopnoea was defined as a reduction in amplitude of airflow or thoracoabdominal wall movement of greater than 50% of baseline for more than 10 seconds, associated with desaturation or arousal. These events were defined as obstructive if they occurred in association with continued diaphragm EMG activity and thoracoabdominal wall movement. Central events were defined as those accompanied by absence of diaphragm EMG activity and thoracoabdominal wall movement.

Hypoxic and hypercapnic ventilatory response tests were performed in 10 patients using previously described techniques. Hypoxic ventilatory response tests were performed at two end tidal carbon dioxide tensions — that is, resting end tidal CO₂ (Petco2a) and an end tidal CO₂ tension approximately 5 mm Hg higher (Petco2b). The relation between breath by breath ventilation and arterial oxygen saturation (Sao2) was calculated by linear regression for both Petco2 values. The slope of these regression lines was then plotted against the Petco2 value at which the test was performed. Hypoxic ventilatory response was expressed by the formula described by Slutsky et al.:

\[\text{hypoxic sensitivity} = \frac{dV}{dSao2} = k_1 \cdot \text{Petco}_2 + k_2 \]

where \(k_1 \) represents the slope of the slopes of ventilation (V) v Sao2 at the Petco2 at which hypoxia was induced, and \(k_2 \) is the y intercept. This formula expresses a differential change in response for a given differential change in stimulus, and allows comparisons between individuals with different Petco2 levels and within individuals for different levels of Petco2. The results of hypoxic ventilatory response testing are presented as \(k_1 \) and \(k_2 \) values.

DATA ANALYSIS

All data are presented as mean (SE). The ventilatory response data were analysed using linear regression by plotting ventilation against Sao2 or Petco2 levels. Paired \(t \) tests were used to compare sleep and ventilatory response data before and after hormone replacement. Unpaired \(t \) tests were used to compare the oestrogen only group with the oestrogen plus progesterone group. A \(p \) value < 0.05 was considered significant. Correlation coefficients were measured by linear regression.

Results

Most patients had moderate obstructive sleep apnoea with an apnoea/hypopnoea index of 43 (9) (range 6–106) and minimum oxyhaemoglobin saturation (MinSao2) of 79 (3)% (range 93–54). The baseline apnoea/hypopnoea index showed a significant correlation with neck size (\(r = 0.54, p < 0.05 \)), waist size (\(r = 0.71, p < 0.005 \)), and waist/hip ratio (\(r = 0.74, p < 0.005 \)). Hormone replacement was generally well tolerated with minimal side effects, all of which were gynaecological in nature. Subjective response to treatment was poor. Only three patients reported a reduction in snoring and witnessed apnoeas (according to their partner). One patient reported a significant improvement in daytime hypersomnolence but objectively there was worsening of obstructive sleep apnoea.

The results are summarised in the table. There was a significant increase in serum oestrogen levels in patients receiving hormone replacement therapy, but in one patient the oestrogen level fell following hormone replacement. There was no change in BMI. Total sleep time, sleep architecture, length of apnoeas, and body position were not significantly different during the two sleep studies. Although there were no significant changes in

![Figure 1](image-url)
Effect of short term hormone replacement in the treatment of obstructive sleep apnoea in postmenopausal women

the prevalence of sleep apnoea, and an increasing prevalence in women after the menopause, has led to speculation that hormonal factors may influence the pathogenesis of sleep apnoea. A number of studies have suggested that androgens may adversely affect sleep disordered breathing in both men and women. However, androgen blockade does not reduce sleep apnoea in men with moderate to severe sleep apnoea. The low prevalence of sleep apnoea in premenopausal women and the increasing frequency after menopause has stimulated interest in the effect of female sex hormones on sleep and breathing. Pickett et al investigated respiration during sleep in nine healthy postmenopausal women after one week of treatment with combined oestrogen and progesterone or placebo. Mild sleep apnoea was observed in patients receiving placebo (apnoea/hypopnoea index 15 (4)), which decreased following treatment with oestrogen and progesterone to 3 (1). Despite these changes no difference in sleep architecture or arousals, and only minimal decreases in mean apnoea/hypopnoea duration, were observed between medication and placebo. Because of the impressive decrease in the apnoea/hypopnoea index after combined hormone treatment reported in that study, and a case report of the effectiveness of combined treatment in more severe sleep apnoea, we proceeded to examine the effect of conventional dose oestrogen and progesterone replacement in postmenopausal patients presenting with moderate to severe forms of sleep apnoea. Our negative findings strongly suggest that conventional hormone replacement therapy is not a treatment alternative for postmenopausal women with sleep apnoea.

A number of factors may explain the discrepancy between the results of our study and those of the previous reports. Most patients in our study were obese and this, rather than changes in hormone levels, is likely to be the dominant factor in producing apnoea. The subjects studied by Pickett et al were all of normal weight with no reported history of sleep apnoea. High, non-conventional doses of oestrogen and progesterone were used in their study (medroxyprogesterone acetate 20 mg three times daily and conjugated equine oestrogens, Premarin, 1.25 mg twice daily), and these are likely to be associated with significant side effects precluding their clinical use. Our study was open and not placebo controlled, so it is possible that a therapeutic effect of hormone replacement may have been obscured by a “first night effect” leading to reduced apnoea severity at baseline. We feel this is unlikely as patients had similar sleep architecture in both studies.

We did note a small but clinically insignificant reduction in the apnoea/hypopnoea index during REM sleep, despite no change in the absolute amount of REM sleep. There were also some individuals with a clinically significant fall in the apnoea/hypopnoea index but this did not correlate with the increment in serum oestrogen level following treatment. It is possible, therefore, that some individuals may well have a therapeutic response to oestrogen and progesterone, but in general the effect

 overall apnoea/hypopnoea index and minSaO2, there was a significant reduction in the apnoea/hypopnoea index during REM sleep from a mean of 58 to 47 (p < 0.05) (figs 1 and 2). There was no difference in the percentage of REM sleep between the two studies (19.3% v 17.4%).

Ventilatory response results are presented in the table. There was no change in the hypercapnic ventilatory response with hormone treatment. The results of hypoxic ventilatory response tests could not be analysed in three patients because of incomplete data due to technical problems. In the remaining seven subjects there was a significant increase in the hypoxic ventilatory response expressed as k1 and k2. The PETCO2 levels at which the hypoxic ventilatory response tests were performed tended to be lower in the tests performed after hormone replacement, but this did not reach statistical significance. Again, there was no difference in response between the oestrogen only and oestrogen plus progesterone groups.

Discussion

Our data indicate that short term hormone replacement therapy with either oestrogen alone or in combination with progesterone had no clinically significant effect on sleep disordered breathing in postmenopausal women with moderate obstructive sleep apnoea, despite a significant increase in serum oestrogen levels. These data do not support the idea that sleep disordered breathing in postmenopausal women is simply due to low levels of oestrogen and progesterone.

The recognition of a male preponderance in
of hormone replacement on sleep apnoea was

disappointing.

Sex hormones influence ventilatory control
which, in turn, may affect sleep apnoea. Proges-
terone is known to stimulate ventilation and increase
chemosensitivity during the luteal phase of the menstrual cycle, in pregnancy, and in normal men. Proges-
terone can improve ventilation in patients with alveolar
hyperventilation, but its effects on the degree of
sleep apnoea in men are relatively minor. Goodman
et al found that the ventilatory stimulation induced by progesterone was
prolonged in the presence of oestrogen. Maximum
stimulation of ventilation by progesterone has been
demonstrated to occur after seven days, with
initial effects at 48 hours. Surprisingly, we were
unable to show a significant change in the
hypercapnic ventilatory response in our
patients after 50 (3) days of treatment, even in
those receiving progesterone. It is likely that
this relates to the lower doses used in our study
compared with previous studies. In contrast,
the hypoxic ventilatory response did increase.
Despite a tendency for PaCO₂, levels to be lower
after hormone replacement, there was a signif-
icant increase in the slope of sensitivity v PaCO₂
indicating a larger interactive component with
carbon dioxide. The significance of this
finding in the absence of any major change in
apnoea is uncertain. It is possible, however, that
this change in hypoxic responsiveness might
relate to the improved apnoea in REM. Al-
though there are conflicting data from animal
and human studies, at least one study suggests
that the hypoxic reflex system plays a relatively
more important part in REM sleep.

In summary, our data indicate that short
term hormone replacement therapy in conven-
tional doses does not significantly reduce the
clinical severity of obstructive sleep apnoea in
postmenopausal women. It is possible that
higher doses or longer treatment may influence
sleep apnoea in some individuals but, in
general, sleep disordered breathing does not
appear to be related simply to low levels of
oestrogen and progesterone.

The authors would like to thank the staff of the Campedown
Sleep Disorders Centre and the Royal Prince Alfred Hospital
Sleep Laboratory for their technical assistance in performing the
sleep studies. PAC was supported by a scholarship from the
National Health and Medical Research Council of Australia.

1 Block AJ, Wynne JW, Boyson PG. Sleep-disordered breath-
ing and nocturnal oxygen desaturation in postmenopausal
2 Pickert CK, Regenstein JS, Woodard WD, Hagerman
DD, Weil JV, Moore LG. Progesterin and estrogen reduce
sleep-disordered breathing in postmenopausal women. J
3 Franklin KJ, Lundgren R, Rabben T. Sleep apnea syndrome
in association with oestrogen and cyclic medroxyprogesterone.
4 Cistulli PA, Sullivan CE. Sleep-disordered breathing in
5 Rebuck JS, Campbell EJ. A clinical method for assessing the
ventilatory response to hyperoxia. Am Rev Respir Dis
6 Read DJC. A clinical method for assessing the ventilatory
7 Rebuck AS, Slutsky AS. Measurement of ventilatory re-
sponses to hypercapnea and hypoxia. In: Hormboin TF, ed.
Regulation of breathing (part II). New York: Marcel
8 Slutsky AS, Mahutte CK, Rubuck AS. A parameter to
describe hypoxic sensitivity. Am Rev Respir Dis
1978;117:390A.
9 Sandstrom RE, Marumoto AM, Schoene RB, Lee KA,
Giblin EC, Bremner WJ, et al. Obstructive sleep apnea
induced by testosterone administration. N Engl J Med
10 Johnson MW, Arch AM, Remmers JE. Induction of ob-
structive sleep apnea syndrome in a woman by exogenous
androgen administration. Am Rev Respir Dis
1984;129:1023.
11 Stewart DA, Grunstein RR, Berthon-Jones M, Handelman
DJ, Sullivan CE. Androgen blockade does not affect sleep-
disordered breathing or chemosensitivity in men with
obstructive sleep apnea. Am Rev Respir Dis
1992;146:1309-93.
12 England SJ, Farhi LE. Fluctuations in alveolar CO₂ and in
base excess during the menstrual cycle. Respir Physiol
13 Prowse CM, Gaensler EA. Respiratory and acid-base changes
14 Zwillich CW, Natale MR, Sutton FD, Weil JV, Tyce
progesterone on chemosensitivity in normal men. J Lab
15 Morikawa T, Tsuchiya Y, Maruyama R, Nishiyabashi Y,
Honda Y. Comparison of two synthetic progesterones on
ventilation in normal males: CMA versus MPA. J Appl
Physiol 1987;63:1610-5.
16 Lyons HA, Huang CT. Therapeutic use of progesterone in
alveolar hyperventilation associated with obesity. Am J Med
17 Lombard RM Jr, Zwillich CW. Medical therapy of obstruc-
18 Goodman RL, Reynolds JG, McGoard AD, Pommerenke
WT. Respiratory and electrolyte effects induced byestro-
19 Skatrud JB, Dempsey JA, Kaisser DJ. Ventilatory response to
medroxyprogesterone acetate in normal subjects: time
20 Phillipson EA, Sullivan CE, Read DJC, Murphy E, Kooz
LF. Ventilatory and waking responses to in sleeping dogs.
J Appl Physiol Respir Environ Exercise Physiol 1978;44:512-
20.