Comparison of sulphur dioxide and metabisulphite airway reactivity in subjects with asthma

P I Field, M McClean, R Simmul, N Berend

Abstract

Background - In asthmatic subjects bronchoconstriction is induced by inhalation of the common food preservatives sulphur dioxide (SO₂) and metabisulphite (MBS). SO₂ and MBS challenges share many similarities, but it is not known whether they are equivalent. In this study of subjects with mild clinical asthma equivalence was assessed by comparing SO₂, and MBS reactivity by estimating the total dose of SO₂ inhaled during SO₂ and MBS challenges, and by calculating SO₂ uptake during both challenges. In addition, as the MBS solutions inhaled were acidic and hyperosmolar, the effect of these factors on MBS responsiveness was investigated.

Methods - Fifteen subjects were challenged on separate days with doubling (0·5 to 8·0 ppm) concentrations of SO₂ gas inhaled during three minute periods of isocapnic hyperventilation and MBS administered in doses ranging from 0·1 to 12·8 μmol using the Wright protocol. On two other days SO₂ and MBS challenges were preceded by a challenge with phosphate buffered saline (PBS) solutions of pH and osmolarity similar to MBS solutions. Response was measured as the dose or concentration causing a 20% fall in FEV₁ (PD₂₀ or PC₂₀).

Results - All subjects reacted to MBS and 14 responded to SO₂. Geometric mean histamine PD₁₀ was 1·61 μmol (95% confidence interval 0·72 to 3·60). MBS and SO₂ airway responsiveness were not significantly related. Estimates of the mean concentration of SO₂ inhaled during SO₂ and MBS challenges differed, as did estimates of the mean SO₂ uptake during both challenges. MBS and SO₂ reactivity were not affected by prior challenge with PBS solutions.

Conclusions - SO₂ and MBS challenges are not comparable. MBS reactivity was not affected by the hyperosmolar, acidic nature of its solutions.

(S Thorax 1994;49:250–256)

Sulphiting agents such as sodium metabisulphite (MBS) and sulphur dioxide (SO₂) are commonly used as food and wine preservatives. In subjects with asthma ingestion of foods and beverages containing these agents can provoke bronchoconstriction, but bronchoconstriction develops more frequently following inhalation of either SO₂ gas or metabisulphite aerosols which are commonly used in the laboratory to assess sensitivity to sulphiting agents. Many characteristics of the airway responses to SO₂ and MBS are similar, so the mechanism by which inhaled MBS provokes bronchoconstriction has been attributed to SO₂ released from MBS aerosols, and SO₂ and MBS challenges have been considered to be equivalent. However, the effect of inhaled MBS may not be solely due to liberated SO₂.

In solution MBS also converts to bisulphite, another potent bronchoconstricting stimulus, and MBS induced bronchoconstriction may be caused by the bisulphite ions in the aerosols acting alone, or together with generated SO₂. Some of the mechanisms by which SO₂ and MBS provoke bronchoconstriction appear to be similar, but there are also differences. Nedocromil sodium inhibits bronchoconstriction induced by both SO₂ and MBS, but while anticholinergic agents have no effect on the response to MBS, in at least 30% of asthmatic subjects SO₂ induced bronchoconstriction is cholinergically mediated.

The aim of this study was to determine whether the bronchoconstrictions induced by inhalation of SO₂ and MBS were similar. This was first examined by comparing the provocative concentration of SO₂ and dose of MBS which caused FEV₁ to fall by more than 20% from baseline. Secondly, to determine whether SO₂ and MBS challenges were equivalent in terms of the amount of SO₂ inhaled, the concentration of SO₂ delivered during an SO₂ challenge, and the concentration released and inhaled during an MBS challenge, were compared. Thirdly, the uptake of SO₂ gas during MBS and SO₂ challenges was estimated and the values compared. Lastly, as the MBS challenge protocol used in this study involved dissolving it in acidic, hyperosmolar solutions, it was important to determine whether these properties of MBS solutions affected responses to MBS, and therefore the comparison between MBS and SO₂ airway responses.

Methods

DOSE-RESPONSE STUDIES

Fifteen clinically stable subjects (seven women, eight men) aged 18–53 years were studied (table 1). Twelve subjects were atopic on skin prick testing and all were non-smokers. Four subjects were taking regular inhaled steroids (beclometasone 400–1000 μg daily) and all used a β₂ agonist as required. Baseline
forced expiratory volume in one second (FEV₁) was above 75% of predicted values in all subjects. All subjects had a histamine PD₁₀₀ of less than 7.8 μmol with a geometric mean of 1.61 μmol (95% CI 0.72 to 3.60). Aerosol bronchodilators were withheld for at least six hours before testing. Informed consent to the protocol, which was approved by the medical ethics review committee of the Royal North Shore Hospital, was obtained from all subjects.

Spirometric parameters were measured by a Vitalograph dry spirometer (Vitalograph, Buckingham, UK). During both SO₂ and MBS challenges FEV₁ was measured before challenge and at one and two minutes after each dose. Measurements were made in duplicate and if values differed by more than 100 ml a third measurement was taken. The highest of two or three measurements was taken.

Sulphur dioxide challenge
Subjects were challenged with SO₂ during sequential three minute periods of eucapnic hyperpnoea separated by three minutes. After measurement of baseline FEV₁, subjects first inhaled a partially humidified air control, followed by doubling concentrations (0.5, 1.0, 2.0, 4.0, and 6.0 ppm) SO₂. An additional 8.0 ppm SO₂ was administered to three of the 15 subjects to enable measurement of a response to SO₂. The challenge was stopped when FEV₁ fell by 20% or more of the control response, or the highest concentration was inhaled.

Sulphur dioxide (100%) was delivered via a Nupro dual double pattern metering valve and 60 μm filter to a stainless steel chamber where it was continually mixed with partially humidified air before being stored in a 100 l Seran bag (Aspec, Ann Arbor, Michigan, USA). End tidal carbon dioxide was maintained at normal resting levels during hyperpnoea by adding 4–5% carbon dioxide to the bag gas mixture. Subjects inhaled the gas mixture using a noseclip via a two way Hans Rudolf valve. The air temperature and humidity of the inspired gas mixture, which were maintained at 65% relative humidity and 27°C, were measured with a Novasina temperature and humidity probe (Novasina, Zurich, Switzerland) with the probe placed in the inspiratory port of the Hans Rudolf valve. The inspired SO₂ concentration was continuously measured with an electrochemical cell SO₂ analyser (Draeger, Sweden) through a port proximal to the Hans Rudolf valve. A Fleisch No. 3 pneumotachograph and differential pressure transducer (PK Morgan, UK) measured air flow which was digitally integrated to obtain ventilation (VE). A constant VE was maintained by subjects breathing in time to a metronome and inhaling a constant tidal volume, with each subject being cued by watching their respiration on a visual display unit. Subjects inhaled a constant tidal volume of either 1.0 or 1.5 l depending on total lung capacity.

Metabsulphite challenge
Metabsulphite challenges were administered with the protocol described by Wright et al. Sodium metabisulphite solutions were made up in phosphate buffered saline (PBS) in concentrations of 6.2, 12.5, 50, and 100 mg/ml. The doses of PBS administered were 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 μmol. Aerosols were delivered with De Vilbiss No. 40 hand held nebulisers (De Vilbiss Corporation, Somerset, Pennsylvania, USA) and all challenges were performed within 30 minutes of preparing the solutions. After inhaling a control aerosol of PBS, increasing doses of MBS were inhaled at three minute intervals. The challenge ended when FEV₁ fell by 20% or more from the control measurement, or when the maximal dose had been administered. The pH and osmolarity of the MBS solutions were 6.56 and 415 mosmol in the 6.25 mg/ml solution, 6.26 and 520 mosmol in the 12.5 mg/ml solution, 5.43 and 1160 mosmol in the 6.4 mg/ml solution, and 4.95 and 1960 mosmol in the 12.8 mg/ml solution.

PBS and histamine challenges
Phosphate buffered saline challenges involved inhalation of solutions of increasing osmolarity, pH and titratable acidity, equivalent to the MBS solutions, using the MBS challenge protocol described above. The osmolarity and pH of the MBS and control PBS solutions are shown in table 2.

Histamine challenges were carried out as described by Yan and coworkers. Histamine
solutions (3·1, 6·0, 25, and 50 mg/ml) were administered via DeVilbiss No. 40 hand held nebulisers in doses ranging from 0·03 to 7·8 μmol histamine. The test was stopped when there was a fall in FEV₁ of 20% or more, or after 7·8 μmol histamine had been administered.

Test procedure
Subjects attended the laboratory five times. At visit 1 they were evaluated by performing baseline pulmonary function, a histamine challenge test, and skin prick tests to common inhaled allergens including Der maporphagoides pteronyssinus, cat and dog dander, Alternaria and Aspergillus moulds, and rye, prairie and timothy grasses. At visit 2 an MBS challenge was performed immediately after a PBS challenge. At visits 3, 4, and 5 subjects were randomly challenged with MBS or SO₂ or, on the other day, a PBS challenge was performed followed immediately by an SO₂ challenge. Challenge with PBS solutions before MBS and SO₂ challenges was performed to determine whether the acidic, hyperosmolar properties of the PBS solutions caused bronchoconstriction, and also whether these solutions potentiating the airway response to MBS. It was expected that a bronchoconstrictive effect due to the properties of the PBS solutions would be identified by challenges performed before both MBS and SO₂. The administration of a PBS challenge before an SO₂ challenge was included in order to determine whether PBS solutions potentiating the bronchoconstrictive response, as it was possible this would be missed when a PBS challenge preceded an MBS challenge which involved administration of MBS dissolved in the hyperosmolar, acidic PBS solutions.

STUDIES OF CONCENTRATION OF SO₂ INHALED DURING SO₂ AND MBS CHALLENGES
To calculate the concentration of SO₂ inhaled during both challenges it was necessary to determine whether SO₂ and MBS challenges were cumulative or non-cumulative in effect. Three subjects with controlled asthma were challenged with MBS on two consecutive days and on two other consecutive days SO₂ challenges were performed. On the first day of a set of challenges an SO₂ or MBS challenge, as described above, was performed. On the second day the final SO₂ concentration or dose of MBS which caused a 20% fall in FEV₁ on the first day was given.

Measurement of SO₂ gas produced by each MBS solution
The concentration of SO₂ generated by each concentration of MBS was measured by squeezing one puff of an MBS solution into a three litre syringe. The concentration of SO₂ was measured with an electrochemical SO₂ analyser (Draeger, Sweden) and SO₂ concentrations greater than 10 ppm were diluted with air to obtain a measurement. Measurements were made on three separate occasions and each time the amount of SO₂ released from each MBS solution was measured three times. Mean values were calculated.

Calculations to determine the concentration of SO₂ gas inhaled during SO₂ and MBS challenges
The concentration of SO₂ delivered during inhalation of SO₂ was calculated by multiplying the SO₂ concentration (ppm) inhaled by the ventilation (l/min) maintained during inhalation by the duration of inhalation of SO₂ (minutes). The amount of SO₂ delivered during inhalation of a dose of MBS was estimated by multiplying the concentration of SO₂ (ppm) released from the MBS solution by the number of inhalations involved in administering the dose of MBS.

UPTAKE OF SO₂ DURING SO₂ AND MBS CHALLENGES
Experiments to estimate the in vivo uptake of SO₂ gas with each dose of MBS and each concentration of SO₂ were performed by three non-asthmatic, non-atopic subjects. After inhalation of a dose of MBS or concentration of SO₂ subjects exhaled via a mouthpiece into a 750 ml container in which the sample line and sample return line of an electrochemical SO₂ analyser (Draeger, Sweden) were placed. Measurement of SO₂ concentration was made immediately after exhalation. Measurement of the amount of SO₂ exhaled following inhalation of a dose of MBS was made after each puff of an aerosol and after the final inhalation involved in administration of the dose. The amount of SO₂ exhaled during SO₂ challenges was measured after subjects inhaled SO₂ for three minute periods of eucapnic hyperventilation. Three sets of measurements were recorded by each subject for each dose of MBS and each SO₂ concentration. Mean values were calculated.

These in vivo measurements were used to calculate the uptake of SO₂ which occurred during SO₂ and MBS challenges. SO₂ uptake was estimated by the following equation:

\[ \text{SO}_2 \text{ uptake} = 1 - \frac{\text{SO}_2 \text{ concentration exhaled}}{\text{SO}_2 \text{ concentration inhaled}} \]

in which SO₂ concentration inhaled was the concentration either generated by MBS solution or administered during SO₂ challenge, and unity represented total uptake.

To calculate SO₂ uptake in each subject the estimate of the total concentration of SO₂ inhaled by a subject was multiplied by the appropriate SO₂ uptake fraction, as calculated above.

ANALYSIS OF DATA
A two way analysis of variance was used to determine if there were any differences in baseline FEV₁ on each study day and the FEV₁ measured before SO₂ and MBS challenges on
Comparison of sulphur dioxide and metabisulphite airway reactivity in asthma

Table 3  Forced expiratory volume in one second (FEV 1) in asthmatic subjects for metabisulphite (MBS) challenge and MBS preceded by phosphate buffered saline (PBS) challenge (PMBS): baseline and after PBS challenge values

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Baseline MBS challenge FEV 1 (l)</th>
<th>Baseline PMBS challenge FEV 1 (l)</th>
<th>After PBS MBS challenge FEV 1 (l)</th>
<th>After PBS PMBS challenge FEV 1 (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-55</td>
<td>3-50</td>
<td>3-55</td>
<td>3-55</td>
</tr>
<tr>
<td>2</td>
<td>3-35</td>
<td>3-35</td>
<td>3-40</td>
<td>3-40</td>
</tr>
<tr>
<td>3</td>
<td>3-30</td>
<td>3-35</td>
<td>3-35</td>
<td>3-35</td>
</tr>
<tr>
<td>4</td>
<td>4-35</td>
<td>4-40</td>
<td>4-45</td>
<td>4-45</td>
</tr>
<tr>
<td>5</td>
<td>3-40</td>
<td>3-30</td>
<td>3-20</td>
<td>3-20</td>
</tr>
<tr>
<td>6</td>
<td>2-50</td>
<td>2-55</td>
<td>2-50</td>
<td>2-50</td>
</tr>
<tr>
<td>7</td>
<td>3-20</td>
<td>3-20</td>
<td>3-25</td>
<td>3-25</td>
</tr>
<tr>
<td>8</td>
<td>4-20</td>
<td>4-20</td>
<td>4-10</td>
<td>4-10</td>
</tr>
<tr>
<td>9</td>
<td>3-20</td>
<td>3-10</td>
<td>3-05</td>
<td>3-05</td>
</tr>
<tr>
<td>10</td>
<td>2-00</td>
<td>2-00</td>
<td>2-05</td>
<td>2-05</td>
</tr>
<tr>
<td>11</td>
<td>2-70</td>
<td>2-80</td>
<td>2-75</td>
<td>2-75</td>
</tr>
<tr>
<td>12</td>
<td>3-75</td>
<td>3-75</td>
<td>3-70</td>
<td>3-70</td>
</tr>
<tr>
<td>13</td>
<td>4-05</td>
<td>4-05</td>
<td>4-00</td>
<td>4-00</td>
</tr>
<tr>
<td>14</td>
<td>3-90</td>
<td>3-90</td>
<td>3-85</td>
<td>3-85</td>
</tr>
<tr>
<td>15</td>
<td>3-90</td>
<td>3-85</td>
<td>3-85</td>
<td>3-85</td>
</tr>
<tr>
<td>Mean</td>
<td>3-42</td>
<td>3-42</td>
<td>3-40</td>
<td>3-40</td>
</tr>
<tr>
<td>SD</td>
<td>0-65</td>
<td>0-65</td>
<td>0-65</td>
<td>0-65</td>
</tr>
</tbody>
</table>

those days when subjects were first challenged with PBS. The effect of eucapnic hyperventilation of humidified air on pulmonary function during SO2 challenges was evaluated by paired t tests.

Dose-response curves were plotted for each challenge, showing the change in FEV 1 against the log of the dose of MBS and against the log of the cumulative concentration of SO2 or cumulative dose of histamine. The PD20 or PC20 was obtained by linear interpolation. When the fall in FEV 1 was less than 20% the maximum dose of MBS or maximum cumulative concentration of SO2 was recorded as the PC20 or PD20 value. The PD20 and PC20 values were log transformed and expressed as geometric mean. The differences in PC20 and PD20 resulting from challenges with SO2 and SO2 preceded by PBS (PSO2) and from challenges with MBS and MBS preceded by PBS (PMBS) were expressed as fold differences with 95% confidence intervals (CI).

The method of Bland and Altman was used to compute PMBS PD20 values obtained after challenges with SO2 and SO2 challenges and to compare PD20 values recorded following MBS and PMBS challenges. The relation between SO2 and SO2 airway reactivity was compared by linear regression. Paired t tests were used to determine if there was any difference between the concentration of SO2 inhaled during SO2 and MBS challenges, and between the uptake of SO2 gas during SO2 and MBS challenges. The association between histamine and SO2 and between histamine and MBS, was assessed by linear regression. Significance was taken at the 5% level.

Results

SO2 AND MBS STUDIES

There was no significant difference between baseline mean (SD) FEV1 on the different study days (tables 3 and 4) and these values did not differ from the mean baseline FEV1 of 3-40 (0-59) recorded before histamine challenge.

All subjects responded to inhalation of MBS during both MBS and PMBS challenges. Inhalation of acidic, hyperosmolar PBS had no significant effect on baseline pulmonary function (table 3). MBS PD20 values ranged from 1-7 to 12-0 μmol with a geometric mean of 4-47 μmol (95% CI 3-16 to 6-31) (table 1). PMBS PD20 values ranged from 1-3 to 12-0 μmol with a geometric mean of 4-47 μmol (95% CI 3-07 to 6-50). The mean change between MBS and PMBS PD20 of 0-99 (95% CI 0-79 to 1-25) fold differences was not significant (fig 1).

One subject (no. 15) did not respond to inhalation of SO2, either during SO2 or SO2 challenges. This subject was assigned a value of 2-3 ppm for both challenges. There was no significant difference in mean FEV1 before and after inhalation of the humidified air control which preceded SO2 challenges on both study days (table 4), nor did the mean change in FEV1 after inhalation of humidified air differ significantly on the two days. On the SO2 study day the mean difference between prechallenge FEV1 and FEV1 measured after inhalation of the humidified control was 0-0231 (95% CI -0-02 to 0-06) compared with a mean difference of -0-0031 (95% CI -0-04 to 0-03) measured on the SO2 study day. The mean VE recorded during SO2 challenges on SO2 and SO2 challenge days of 40-6 (12-34)1/min and 40-8 (10-46)1/min, respectively, were similar.

Baseline FEV1 did not change significantly

Table 4  Forced expiratory volume in one second (FEV1) in asthmatic subjects for sulphur dioxide (SO2) challenge and SO2 preceded by phosphate buffered saline (PBS) challenge (PSO2): baseline, after PBS challenge, and after inhalation of humidified air control values

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Baseline SO2 challenge FEV1 (l)</th>
<th>After PBS SO2 challenge FEV1 (l)</th>
<th>Baseline PBS SO2 challenge FEV1 (l)</th>
<th>After PBS PBS SO2 challenge FEV1 (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3-50</td>
<td>3-45</td>
<td>3-40</td>
<td>3-35</td>
</tr>
<tr>
<td>2</td>
<td>3-35</td>
<td>3-40</td>
<td>3-30</td>
<td>3-20</td>
</tr>
<tr>
<td>3</td>
<td>3-30</td>
<td>3-35</td>
<td>3-50</td>
<td>3-50</td>
</tr>
<tr>
<td>4</td>
<td>4-45</td>
<td>4-50</td>
<td>4-50</td>
<td>4-50</td>
</tr>
<tr>
<td>5</td>
<td>3-35</td>
<td>3-40</td>
<td>3-20</td>
<td>3-20</td>
</tr>
<tr>
<td>6</td>
<td>2-50</td>
<td>2-45</td>
<td>2-65</td>
<td>2-65</td>
</tr>
<tr>
<td>7</td>
<td>3-25</td>
<td>3-15</td>
<td>3-00</td>
<td>3-00</td>
</tr>
<tr>
<td>8</td>
<td>3-40</td>
<td>4-15</td>
<td>4-00</td>
<td>4-00</td>
</tr>
<tr>
<td>9</td>
<td>3-20</td>
<td>3-20</td>
<td>3-15</td>
<td>3-15</td>
</tr>
<tr>
<td>10</td>
<td>2-10</td>
<td>2-10</td>
<td>2-15</td>
<td>2-15</td>
</tr>
<tr>
<td>11</td>
<td>2-70</td>
<td>2-70</td>
<td>2-75</td>
<td>2-75</td>
</tr>
<tr>
<td>12</td>
<td>3-70</td>
<td>3-80</td>
<td>3-70</td>
<td>3-75</td>
</tr>
<tr>
<td>13</td>
<td>3-80</td>
<td>3-90</td>
<td>4-00</td>
<td>4-05</td>
</tr>
<tr>
<td>14</td>
<td>3-85</td>
<td>3-90</td>
<td>3-80</td>
<td>3-85</td>
</tr>
<tr>
<td>15</td>
<td>3-65</td>
<td>3-60</td>
<td>3-80</td>
<td>3-80</td>
</tr>
<tr>
<td>Mean</td>
<td>3-38</td>
<td>3-40</td>
<td>3-39</td>
<td>3-40</td>
</tr>
<tr>
<td>SD</td>
<td>0-60</td>
<td>0-64</td>
<td>0-62</td>
<td>0-63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean of log10 MBS PD20 and PMBS PD20 values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of log10 MBS PD20 and PMBS PD20 values</td>
</tr>
</tbody>
</table>

Figure 1  Relation in each subject (n=15) between the mean of log10 MBS PD20 values following challenge with metabisulphite (MBS) and challenge with phosphate buffered saline followed by MBS (PMBS), and the difference between log10 MBS PD20, MBS PD20, PMBS, PD20 MBS is the dose of MBS producing a 20% fall in FEV1.
following challenge with PBS (table 4). Sulphur dioxide PC\textsubscript{20} values ranged from 1-05 to 23-5 ppm with a geometric mean of 6-17 ppm (95% CI 3-77 to 10-01) (table 1), and PSO\textsubscript{2} PC\textsubscript{20} values ranged from 1-5 to 23-5 ppm with a geometric mean of 6-08 ppm (95% CI 3-95 to 9-35). The mean change between SO\textsubscript{2} and PSO\textsubscript{2}, PC\textsubscript{20} of 0-99 (95% CI 0-78 to 1-25) fold differences was not significant (fig 2).

The correlation between MBS PD\textsubscript{20} and SO\textsubscript{2} PC\textsubscript{20} was not significantly related ($r=0.42$, $p>0.05$) (fig 3). Responsiveness to histamine did not correlate significantly with responsiveness to either SO\textsubscript{2} ($r=0.35$, $p>0.05$) (fig 4) or to MBS ($r=0.47$, $p>0.05$) (fig 5).

CONCENTRATION OF SO\textsubscript{2} INHALED DURING SO\textsubscript{2} AND MBS CHALLENGES

The effect of MBS did not appear to be cumulative. When three subjects inhaled increasing doses of MBS FEV\textsubscript{1} fell by a mean of 25-6 (4-2%) at the dose of MBS which caused FEV\textsubscript{1} to fall by more than 20% from baseline. This change in FEV\textsubscript{1} was similar to the mean change in FEV\textsubscript{1} of 24-3 (2-3%) which was recorded when only the final MBS dose was inhaled. In contrast, the effect of SO\textsubscript{2} appeared cumulative. When three subjects inhaled SO\textsubscript{2} the fall in FEV\textsubscript{1} at the concentration of SO\textsubscript{2} which caused FEV\textsubscript{1} to fall by more than 20% from baseline was a mean of 22-8 (2-6%). This change differed significantly from a mean fall in FEV\textsubscript{1} of 9-3 (0-6%) which occurred when only the final concentration of SO\textsubscript{2} was inhaled.

The mean concentrations of SO\textsubscript{2} released by the 6-2, 12-5, 50, and 100 mg/ml solutions of MBS were 1-3 (0-14) ppm (range 0-9 to 1-4), 1-92 (0-13) ppm (range 1-8 to 2-1), 18-24 (1-65) ppm (range 17-21-0), and 51-25 (3-89) ppm (range 48-54), respectively. As MBS did not act cumulatively, the concentration of SO\textsubscript{2} inhaled by each subject during an MBS challenge was calculated using only the concentration of SO\textsubscript{2} generated by the dose of MBS which caused FEV\textsubscript{1} to fall by 20% from baseline. As SO\textsubscript{2} challenges were cumulative, the concentration of SO\textsubscript{2} inhaled by each subject was the sum of all the SO\textsubscript{2} inhaled during the doses prior to and including the SO\textsubscript{2} concentration which caused FEV\textsubscript{1} to fall more than 20% from baseline.

Using these results it was estimated that, during MBS challenges, the total SO\textsubscript{2} concentration delivered ranged from 45 to 381 ppm, with a mean of 168 ppm (95% CI 119 to 217). This was significantly different ($p<0.0001$) from the total concentration of SO\textsubscript{2} inhaled during SO\textsubscript{2} challenges which ranged from 300 to 2325 ppm with a mean of 957 ppm (95% CI 564 to 1350).

UPTAKE OF SO\textsubscript{2} DURING SO\textsubscript{2} AND MBS CHALLENGES

In vivo experiments confirmed that uptake of SO\textsubscript{2} generated by each dose of MBS was almost complete. The SO\textsubscript{2} concentration
measured on exhalation after inhalation of each MBS dose was 0.5 ppm. When a dose of MBS involved more than one inhalation the concentration of SO₂ in exhaled samples was the same, either when measured after each inhalation or when measured after the final inhalation. The estimated uptake of SO₂ was 60% for a 0.1 μmol dose of MBS, 75% for 0.2, 0.4, and 0.8 μmol doses, and between 95% and 97% for 1.6, 3.2, 6.4, and 12.8 μmol doses of MBS. Uptake of SO₂ was 80% for all SO₂ concentrations.

When these results were used to estimate SO₂ uptake it was calculated that, during MBS challenges, SO₂ uptake ranged from 43 to 377 ppm with a mean of 165 ppm (95% CI 116 to 214). This differed significantly (p<0.001) from the uptake of SO₂ during SO₂ challenges, when estimates ranged from 140 to 1860 ppm with a mean of 765 ppm (95% CI 450 to 1080).

**Discussion**

Although inhalation of nebulised MBS is thought to provoke bronchoconstriction via generated SO₂, no relation between SO₂ and MBS airway reactivity was found in this study. However, as all subjects recruited reacted to relatively high doses of both MBS and SO₂, airway reactivity to MBS and SO₂ may be related in subjects more sensitive to both agents. In addition, as a small number of subjects were studied, the failure to find a relation between SO₂ and MBS responsiveness may have been due to a type II error.

The properties of aerosols which can cause airway narrowing in asthmatic subjects include the osmolarity, pH, and titratable acidity. Bronchoconstriction is provoked by inhalation of hyperosmolar solutions and by inhalation of acidic solutions, with buffered acidic solutions inducing more severe airway narrowing than unbuffered solutions. The MBS solutions administered in this study were hyperosmolar and acidic and were also buffered by phosphate saline. However, when subjects inhaled PBS solutions of osmolarity, pH, and titratable acidity equivalent to the MBS solutions, no bronchoconstriction was observed. These results are supported by the findings of Wright et al who partially investigated whether the properties of MBS solutions affected MBS responses. In their study five asthmatic subjects did not bronchoconstrict after challenge with saline solutions of osmolarity equivalent to the MBS solutions.

The acidic, hyperosmolar properties of the PBS solutions did not appear to potentiate airway responsiveness. There was no difference between SO₂ PC₂₀ values obtained when an SO₂ challenge was performed alone or preceded by a PBS challenge and, similarly, an initial PBS challenge did not affect MBS responsiveness. It is most likely that the properties of the solution in which MBS was dissolved did not affect the response to MBS because the quantity of aerosol administered was so small. In studies investigating the bronchoconstrictive potential of hyperosmolar aerosols and acidic aerosols the minimum volume inhaled has been 2 ml. The mean output of DeVilbis nebulisers used in this study was 0.018 ml per puff and, therefore, during an MBS challenge the greatest amount of aerosol administered was only 0.14 ml.

The lack of a relation between SO₂ and MBS airway responsiveness and the lower estimates of the amount of SO₂ inhaled and absorbed during MBS challenges suggest that MBS induced bronchoconstriction is not solely due to generated SO₂. When MBS is dissolved in solution it reacts chemically to form bisulphite and sulphite and SO₂ is generated. These substances enter into equilibrium with each other, with more acidic solutions favouring generation of SO₂. Bisulphite and SO₂ are potent bronchoconstricting agents, whereas sulphite has only a weak effect. During MBS challenges aerosolised bisulphite and generated SO₂ are highly reactive and it is likely that these bronchoconstricting stimuli continue to interact after inhalation. Bronchoconstriction could result from bisulphite ions deposited directly in the airways or formed locally from dissolved SO₂ gas and from SO₂ either inhaled or generated from bisulphite in the airways. In contrast, during SO₂ challenges, when a constant concentration of SO₂ is inhaled, SO₂ is quickly absorbed in the aqueous environment of the airways. At the pH of human airways, which averages 6.6, it is likely that most of the inhaled SO₂ rapidly converts to bisulphite. Thus, both SO₂ and bisulphite probably play a part in SO₂ and MBS induced bronchoconstriction, but the contribution of each stimulus to each challenge differs. Such a difference may underlie the lack of a relation between SO₂ and MBS challenges.

Sulphur dioxide is almost completely absorbed when inhaled via the nose, but when inhaled via the mouth absorption of SO₂ is altered by the concentration of SO₂ administered and, more importantly, by the rate of administration. When 1 ppm and 10 ppm SO₂ were administered to rabbits SO₂ absorption decreased from 99.5% to 96.3%, but following a tenfold increase in the rate of administration SO₂ absorption fell to 66%. In our study it was estimated that 80% of each concentration of SO₂ inhaled was absorbed. This uniform amount of absorption was most probably due to the rate of administration of SO₂, which was inhaled at an average VE of 40 l/min. Factors which could influence absorption of SO₂ or bisulphite ions generated during MBS challenges have not been investigated but, in our study, in vivo experiments indicated that more SO₂ was absorbed at the higher MBS concentrations. One factor which could have affected our estimates of SO₂ absorption in both MBS and SO₂ challenges was desorption of SO₂ from the mucosal surfaces of the upper airway. This begins immediately after cessation exposure to SO₂ and about 15% of the inspired concentration is desorbed over 30 minutes. It is unlikely, however, that SO₂ desorption significantly contributed to exhaled SO₂ measurements performed in our study as SO₂ concentrations were sampled over a matter of seconds.
The lack of correlation between airway responsiveness to histamine and to either MBS or to SO₂ has been observed in other studies.⁴⁻¹⁰ We also confirmed that MBS did not act cumulatively, which Wright et al.¹ had clearly demonstrated in 11 asthmatic subjects. However, increasing concentrations of SO₂ were found to be cumulative in effect. This difference was studied in only a small number of asthmatic subjects because we had previously observed, in 15 asthmatic subjects using specific airway resistance to measure the airway response (unpublished data), that SO₂ acted cumulatively when administered using the protocol described in this study. It is possible that this differing characteristic of MBS and SO₂ responses relates to the duration of exposure to SO₂ as, during SO₂ challenges SO₂ was inhaled continuously for three minute periods, whereas inhalation of MBS involved only three second breath holds.

In conclusion, MBS and SO₂ airway responsiveness were not related in subjects with asthma. Although it is not clear whether bronchoconstriction provoked by inhalation of MBS is due to the effect of generated SO₂ or bisulphite ions,⁷ the difference between the estimated amounts of SO₂ inhaled during SO₂ and MBS challenges, the differing estimates of SO₂ uptake during both challenges, and the lack of a relation between MBS and SO₂ airway reactivity all indicate that MBS induced bronchoconstriction involves mechanisms additional to the effect of generated SO₂.

The authors wish to thank Jenny Peat, Senior Research Officer, Department of Medicine, Sydney University for statistical advice. This research was funded by the Asthma Foundation of New South Wales.

1 Stevenson DD, Simon RA. Sensitivity to ingested meta-
2 Sheppard D, Wong WS, Uechara CF, Nadel JA, Boushey HA. Lower threshold and greater bronchomotor respons-
3 Schwartz HJ, Chester EJ. Bronchospastic responses to aerosolised metabisulphite in asthmatic subjects: poten-
5 Fine JM, Gordon T, Sheppard D. The roles of pH and ion species in sulfur dioxide- and sulfitel-induced bron-
7 Nichol GM, Nix A, Chung KF, Barnes PJ. Characterisation of bronchoconstrictor responses to sodium meta-
11 Fine JM, Gordon T, Thompson JE, Sheppard DS. The role of titratable acidity in acid aerosol-induced bronch-
19 Frank NR, Yoder RE, Brain JD, Yokoyama E. SO₂ (³⁵S labeled) absorption by the nose and mouth under con-
20 Delhory I, Simmurl R, Castle WD, Allen DH. The relationship of inhaled sulfur dioxide reactivity to ingested meta-