subjects there was an increase in bronchial hyperresponsiveness only during those two weeks of the study, but by the end of four weeks this increase had disappeared. In the study of Vathenen et al (ref 7) with eight asthmatic subjects it was observed that a (rebound) increase in hyperresponsiveness occurred, not whilst using the β agonist but afterwards. In our own study (ref 14) an increase in hyperresponsiveness was observed when using a β agonist in a selected group of 15 patients. These 15 patients were selected on the condition that they had not used any β agonists or β blockers for one year before the start of the study. They were part of a much larger group of 144 patients who, on average, did not show an increase in bronchial hyperresponsiveness during the use of the β agonist (ref 1, not presented in the table). Looking at the presented table, it seems that the more patients involved in these studies the less clear is the adverse prognosis of bronchial hyperresponsiveness during the continuous use of a bronchodilator. This underlines our conclusion that only in subgroups of patients who might the continuous use of a β, adrenergic drug have an adverse effect on bronchial hyperresponsiveness. The only exception seems to be the study of Sears and Taylor themselves (ref 3) with a relatively large number of 64 patients. However, this is the only study in which patients were allowed to use anti-inflammatory drugs as well as their bronchodilator drugs.

As Sears and Taylor have already acknowledged, the observed changes in hyperresponsiveness were small. They found all between 0.5 and 1.5 doubling of the challenge test, which is virtually similar to the repeatability of the challenge test and is therefore of doubtful clinical significance.

The purpose of writing our editorial was not to present a neutral position in this important issue but to show that the general fear that exists among doctors and patients about the chronic use of bronchodilators does not have to be justified by the data available at this moment. We did not, and not, doubt that bronchodilators probably have a (small) negative influence on the long term prognosis of bronchial hyperresponsiveness in certain groups of asthmatic patients. Subgroup analyses of our own data have shown that especially allergic hyper-responsive asthmatic patients seem to have an increased progression of asthma with continuous use of a β agonist.7 Another important issue which still has to be settled is what additional bronchodilator drug should be used (and in what dose) when the patient receives a combination of an anti-inflammatory drug and a bronchodilator.

C P VAN SCHAYCK
C L A VAN HERWAARDEN
Departments of General Practice and Pulmonary Disease
Nijmegen University,
PO Box 9101,
6500 HB Nijmegen,
The Netherlands


AUTHORS' REPLY
In reply to the letter of Crane et al there are some fundamental issues which must be discussed in the paper, require further clarification.

The purpose of our study was not to assess

Extrapulmonary effects of fenoterol and salbutamol in normal subjects

Newnham et al have attempted the difficult task of trying to dissect relative β1 and β2 mediated cardiovascular responses to large doses of salbutamol and fenoterol in normal subjects with a low dose of atenolol (June 1993;48:656–8). There are two issues: firstly, the comparative responses to similar doses of these agents by inhalation and, secondly, their selectivity at the β2 receptor.

Newnham et al showed that salbutamol and fenoterol in doses of 1 mg and 3 mg from metered dose inhalers led to similar increases in heart rate, stroke distance, and tremor, with fenoterol causing a slightly greater fall in serum potassium concentration and a greater rise in systolic blood pressure than salbutamol. Their findings suggest smaller differences between higher doses of salbutamol and fenoterol. In all experiments other than those of the authors, the comparisons made have been in vivo, in vivo, or in different species.13 Invariably fenoterol has been found to be more potent in large doses than salbutamol, both during intravenous preparations have found a 2–4 times greater effect on heart rate, fenoterol, and this has led to a tenfold difference in the concentra- tion of intravenous solutions used routi- nely (500 μg/ml salbutamol compared with 50 μg/ml fenoterol) for the different findings of Newnham et al are unclear.

The attempts by the authors to dissect relative β1 and β2 effects have failed as they have shown that atenolol significantly at- tenuates the β2 mediated effect on heart rate, tremor, and serum potassium concentration. Other designs based on studies by Wellstein et al1 or Hall et al may enable such relative β receptor specifcity to be shown.

J CRANE
C BURGESS
R BRASLEY
Department of Medicine,
Wellington School of Medicine,
Wellington,
New Zealand

C WONG
Department of Medicine,
University of Otago,
Dunedin,
New Zealand

Wong et al showed that salbutamol and 0.5% isoprenaline were not the relative potency of fenoterol and salbu- tamol, which requires careful in vitro studies on asthmatic subjects to ascertain relative broncho- dilator and systemic β2 receptor activity. The 25 mg dose of atenolol in our study was chosen on the basis of it producing relatively selective β1 blockade. It is, however, well documented that atenolol displays dose related β2 blockade,13 and so it is not, per- haps, surprising that even a 25 mg dose produced a degree of β2 antagonism. The im- portant point is that a comparable degree of attenuation occurred with serum potassium responses, both of which have been shown to be β2 mediated.14 Indeed, this occurred to the same extent with both fenoto- rel and salbutamol.

If fenoterol had stimulated cardiac β1 receptors to a greater degree than salbuta- mol, one would have predicted atenolol to have antagonised the chronotropic response to fenoterol more than salbutamol. This was clearly not the case, with the percentage attenuation by atenolol at the 4 mg dose being 14% for fenoterol and 16% for salbu- tamol. The percentage attenuation of the systolic blood pressure was also comparable for fenoterol and salbutamol (8%). Thus, whilst fenoterol may exhibit greater β1 potency, there is no evidence for it being less selective in terms of relative car- die β1/β2 receptor stimulation. It is also worth pointing out that in a study from Windom et al1 in asthmatic subjects there was no difference in either chronotropic or systolic blood pressure responses to fenoterol and salbutamol, in contrast with isoprenaline which produced greater effects, presumably β2 adrenoceptor mediated.

Our in vivo data are indeed supported by dreams in human studies, showing that the relative pA2 values for salbutamol and IC50 (β1 antagonist) and IC18 551 (β2 antagonist) were 5.47 and 8.24 respectively, for antagon- ism of the isotropic response to fenoterol. Taken together we believe that the body of evidence supports the hypothesis that the effects of fenoterol on the human heart are predominantly caused by stimulation of cardiac β2 receptors.

B J LIPWORTH
D M NEWNHAM
O D G TAYLOR
Department of Clinical Pharmacology,
Ninewells Hospital and Medical School,
Dundee DD1 9SY


