Bronchodilators and bronchial hyperresponsiveness

In a recent editorial (May 1993; 48: 470–3) Drs van Schayck and van Herwaarden present a surprisingly ambivalent account of the effects of β-agonist treatment on airway responsiveness. Their conclusion that β-agonists have an unimportant effect on responsiveness appears to be based on recent analyses of data from their own study. However, a thorough review of the studies discussed by van Schayck and van Herwaarden1,2 and other relevant studies3,4,5,6 ought to prompt different conclusions.

The table shows the results of reported studies of the chronic effects of β-agonists on airway responsiveness in asthmatic patients. Single-dose studies have been excluded. We have calculated mean geometric PC$_{20}$ values for the full treatment period in those studies where sufficient data are given, and in all cases we have looked for differences between the “treatment” PC$_{20}$ (during regular β-agonist therapy) and either the baseline PC$_{20}$ (for parallel group studies) or the control arm (for PRN β-agonist) in crossover studies.

We acknowledge that the changes noted are often small and not always statistically significant. Nevertheless, there is a considerable weight of evidence for a negative effect of β-agonists on airway hyperresponsiveness. Of the 15 studies listed, 10 showed increased airway responsiveness (lower PC$_{20}$ or PD$_{20}$) during regular β-agonist therapy, and in five of these the change was statistically significant. In only two studies was decreased responsiveness found (higher PC$_{20}$ or PD$_{20}$, of which one was statistically significant). In both of these latter studies7,8 there were substantial withdrawals because of worsening asthma, and although the last measurement of airway responsiveness was carried forward, this may still obscure a deleterious effect on PC$_{20}$, those whose asthma deteriorated would be more likely to withdraw from the study.

By taking a neutral position on this important issue, van Schayck and van Herwaarden do not do justice to the data regarding β-agonists and airway responsiveness. Although we agree that the mean changes in airway responsiveness during or following regular β-agonists are small when considered in relation to the variability of measurement of airway responsiveness in an individual, the effect of a small net increase in mean airway responsiveness in a larger population is much more significant, leading to an increase in severity of asthma—and they have expressed agreement with this view. The mechanism of the adverse effect of regular or frequent β-agonist use on asthma is still to be fully explained, but there is little doubt that it exists, and this is reflected in the changes in airway responsiveness which occur in most patients taking these drugs.

D ROBIN TAYLOR
University of Otago Medical School, PO Box 913, Dunedin, New Zealand

MALCOLM R SEARS
McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 4A6


AUTHORS’ REPLY
We thank Drs Taylor and Sears for their interesting reviews of our editorial published in the first issue of Thorax that derived from the conclusion that β-agonists have unimportant effects on bronchial hyperresponsiveness. Our literal conclusion, however, was that “monotherapy with bronchodilators does not, in general, increase bronchial hyperresponsiveness. In subgroups of patients and with high dosages of a β-adrenergic drug it may have such an effect, although it is small and of doubtful clinical significance.” In the table presented by Sears and Taylor supports this conclusion. Of all 15 available studies (ref 16 has not been published yet) there are only three (refs 5, 7, and 14) that showed a statistically significant increase in bronchial hyperresponsiveness associated with use of a β-agonist. A general conclusion is not possible.

In our study the effects of regular β-agonists were compared with those of placebo in children with mild asthma with use of both drugs on each occasion (see Table 1). In the study of Kraan et al (ref 5) with 17 asthmatic

Reference Drug (mg/day) Design Weeks n Change in airway responsiveness Direction Magnitude (baseline, regular) p

2 Fenoterol 600 RDB,PL 16 8 No change PD$_{20}$ = 16.3, 16.9
3 Fenoterol 1600 RDB,PC,X 24 64 Increased PD$_{20}$ = 153, 153 <0.05
4 Fenoterol 1600 Open 16 11 No change PD$_{20}$ = 26.9, 26.9
5 Terbutaline 2000 RDB 4 4 Increased PD$_{20}$ = 47.3, 34 <0.05
6 Terbutaline 1500 RDB 24 7 Increased PD$_{20}$ = 43, 25
7 Terbutaline 2250 RDB 24 8 Increased PD$_{20}$ = 0.84 dd <0.05
8 Terbutaline 2000 RDB 4 15 Increased PD$_{20}$ = 0.89, 0.66 <0.05
9 Terbutaline 750 RDB 2 years 53 Decreased PD$_{20}$ = 0.5 4 <0.01
10 Salbutamol 2000 RDB,X 1 12 Increased PD$_{20}$ = 0.5 4 <0.01
11 Salbutamol 2000 PL 24 91 Decreased PD$_{20}$ = 0.5 4 <0.01
12 Salbutamol 3000 RDB,X,PL 2–4 No change No significant change
13 Salbutamol 3000 4 8 Increased No significant change
14 Salbutamol 800 Open 4 8 Increased No significant change
15 Salbutamol 1600 Open 52 15 Increased No significant change
16 Salbutamol 600 Open 50 11 Increased No significant change
17 Salbutamol 600 Open 96 58 Increased No significant change

R = randomised; DB = double blind; PC = placebo controlled; PL = parallel groups; X = crossover; dd = doubling dose.

Downloaded from http://thorax.bmj.com/ on September 15, 2023 by guest. Protected by copyright.
subjects there was an increase in bronchial hyperresponsiveness only during the first two weeks of the study, but by the end of four weeks this increase had disappeared. In the study of Vathenen et al (ref 7) with eight asthmatic subjects it was observed that a (rebound) increase in hyperresponsiveness occurred, not whilst using the B2 agonist but afterwards. In our own study (ref 14) an increase in hyperresponsiveness was observed when using a B2 agonist in a selected group of 15 patients. These 15 patients were selected on the condition that they had not used any B1 agonists or B2 blockers for one year before the start of the study. They were part of a much larger group of 144 patients who, on average, did not show an increase in bronchial hyperresponsiveness during the use of the B2 agonist (ref 1, not presented in the table). Looking at the presented table, it seems that the more patients involved in these studies the less clear is the adverse prognostic of bronchial hyperresponsiveness during the continuous use of a bronchodilator. This underlines our conclusion that only in subgroups of patients might the continuous use of a B2 adrenergic drug have an adverse effect on bronchial hyperresponsiveness. The only exception seems to be the study of Sears and Taylor themselves (ref 3) with a relatively large number of 64 patients. However, this is the only study in which patients were allowed to use anti-inflammatory drugs as well as their bronchodilator drugs.

As Sears and Taylor have already acknowledged, the observed changes in hyperresponsiveness were small. They were all between 0.5 and 1.5 doubling doses of the challenge test, which is virtually similar to the repeatability of the challenge test1 and is therefore of doubtful clinical significance.

The purpose of writing our editorial was not to present a neutral position in this important issue but to show that the general fear that exists among doctors and patients about the chronic use of bronchodilators does not seem to be justified by the data available at this moment. We did not, and do not, doubt that bronchodilators probably have (a small) negative influence on the long term prognosis of bronchial hyperresponsiveness in certain groups of asthmatic patients. Subgroup analyses of our own data have shown that especially allergic hyperreactive asthmatic patients seem to have an increased progression of asthma with continuous use of a B2 agonist.2 Another important issue which still has to be settled is what additional bronchodilator drug should be used (in what dose) when the patient receives a combination of an anti-inflammatory drug and a bronchodilator.

C.P.VAN SCHAYCK
C.L.A.VAN HERWAARDEN
Departments of General Practice and Pulmonary Diseases
Nijmegen University, PO Box 9101, 6500 HB Nijmegen, The Netherlands


Extrapulmonary effects of fenoterol and salbutamol in normal subjects

Newnham et al have attempted the difficult task of trying to dissect relative B1 and B2 mediated cardiovascular responses to large doses of salbutamol and fenoterol in normal subjects with a low dose of atenolol (June 1993;48:656-8). There are two issues: firstly, the comparative responses to similar doses of these agents by inhalation and, secondly, their selectivity at the B2 receptor.

Newnham et al showed that salbutamol and fenoterol in doses of 1 mg and 3 mg from metered dose inhalers led to similar increases in heart rate, stroke distance, and tremor, with fenoterol causing a slightly greater fall in serum potassium concentration and a greater rise in systolic blood pressure than salbutamol. Their findings suggest smaller differences between higher doses of salbutamol and fenoterol on cardiovascular responses than other studies, whether the comparisons have been made in vitro, in vivo, or in different species12. Invariably fenoterol has been found to be more potent in large doses than salbutamol. However, intravenous preparations have found a 2-4 times greater effect on heart rate with fenoterol, and this has led to a tenfold difference in the concentration of intravenous solutions used routinely (500pg/ml salbutamol compared with 50-100pg/ml fenoterol). For the different findings of Newnham et al are unclear. The attempts by the authors to dissect relative B1 and B2 effects have failed as they have shown that atenolol significantly attenuates the B2 mediated effect on heart rate, tremor, and serum potassium concentration. Other designs based on studies by Wellstein et al4 or Hall et al5 may enable such relative B2 receptor specificity to be shown.

J CRANE
C BURGISS
R BRAYLEY
Department of Medicine, Wellington School of Medicine, Wellington, New Zealand

C WONG
Department of Medicine, University of Otago, Dunedin, New Zealand

AUTHORS' REPLY In reply to the letter of Crane et al there are some fundamental issues which, although discussed in the paper, require further clarification.

The purpose of our study was not to assess the relative potency of fenoterol and salbutamol, which requires careful study on asthmatic subjects to ascertain relative bronchodilator and systemic B2 receptor activity. The 25 mg dose of atenolol in our study was chosen on the basis of it producing relatively selective B1 blockade. It is, however, well documented that atenolol displays dose related B2 blockade,13 and so it is not, perhaps, surprising that even a 25 mg dose produced a degree of B2 antagonism. The important point is that a comparable degree of attenuation occurred with heart rate, tremor, and potassium responses, both of which have been shown to be B2 mediated.14 Indeed, this occurred to the same extent with both fenoterol and salbutamol.

If fenoterol had stimulated cardiac B2 receptors to a greater degree than salbutamol, one would have predicted atenolol to have antagonised the chronotropic response to fenoterol more than salbutamol. This was clearly not the case with the percentage attenuation by atenolol at the 4 mg dose being 14% for fenoterol and 16% for salbutamol. The percentage attenuation of the systolic blood pressure was also comparable for both drugs (11% for fenoterol and 8% for salbutamol). Thus, whilst fenoterol may exhibit greater B2 potency, there is no evidence for it being less selective in terms of relative cardiac B1/B2 receptor stimulation. It is also worth pointing out that in a study from Windom et al11 in asthmatic subjects there was no difference in either chronotropic or systolic blood pressure responses to fenoterol and salbutamol, in contrast with isoprenaline which produced greater effects, presumably B1 adrenoceptor mediated.

Our in vivo data are indeed supported by in vitro data in human right atria,11 showing that the relative pA2 values for practolol (B2 antagonist) and ICI 18 551 (B1 antagonist) were 5.47 and 8.24 respectively, for antagonism of the intrinsic response to fenoterol. Taken together we believe that the body of evidence supports the hypothesis that the effects of fenoterol on the human heart are predominantly caused by stimulation of cardiac B2 receptors.

B J LIPWORTH
D M NEWNHAM
Department of Clinical Pharmacology, Ninewells Hospital and Medical School, Dundee DD1 9SY