Letters to the editor

Bronchodilators and bronchial hyperresponsiveness

In a recent editorial (May 1993; 48: 470-3) Drs van Schayck and van Herwaarden present a surprisingly ambivalent account of the effects of β agonist treatment on airway responsiveness. Their conclusion that β agonists have an unimpor- tant effect on responsiveness appears to be based on recent analyses of data from their own study. However, a thorough review of the studies discussed by van Schayck and van Herwaarden and other relevant studies have gone to prompt different conclusions.

The table shows the results of reported studies of the chronic effects of β agonists on airway responsiveness in asthmatic patients. Single dose studies have been excluded. We have calculated mean geometric PC20 values for the full treatment period in those studies where sufficient data are given, and in all cases have looked for differences between the 'treatment' PC20 (during regular β agonist therapy) and either the baseline PC20 (for parallel group studies) or the control arm (for arm β agonist) in crossover studies.

We acknowledge that the changes noted are often small and not always statistically significant. Nevertheless, there is a considerable weight of evidence for a negative effect of β agonists on airway hyperresponsiveness. Of the 15 studies listed, 10 showed increased airway responsiveness (lower PC20 or PD20) during regular β agonist therapy, and in five of these the change was statistically significant. In two studies we decreased responsiveness found (higher PC20 or PD20), of which one was statistically significant. In both of these latter studies there were substantial withdrawals due to worsening asthma, and although the last measurement of airway responsiveness was carried forward, this may still obscure a deleterious effect on PC20, as those whose asthma deteriorated would be more likely to withdraw from the study.

By taking a neutral position on this important issue, van Schayck and van Herwaarden do not do justice to the data regarding β agonists and airway responsiveness. Although we agree that the mean changes in airway responsiveness during or following regular β agonists are small when considered in relation to the variability of measurement of airway responsiveness in an individual, the effect of a small net increase in mean airway responsiveness in a larger population is much more significant, leading to an increase in severity of asthma - and they have expressed agreement with this view. The mechanism of the adverse effect of regular or frequent β agonist use on asthma is still to be fully explained, but there is little doubt that it exists, and this is reflected in the changes in airway responsiveness which occur in most patients taking these drugs.

D ROBIN TAYLOR
University of Otago Medical School,
PO Box 913,
Dunedin, New Zealand

MALCOLM R SEARS
McMaster University,
1200 Main Street West,
Hamilton, Ontario, Canada L8N 4A6


Autors' reply

We thank Drs Taylor and Sears for their remarks on our editorial. The published editorial from which they derived that we concluded that β agonists have unimportant effects on bronchial hyperresponsiveness. Our literal conclusion, however, was that "a monotherapy with bronchodilators does not, in general, increase bronchial hyperresponsiveness. In subgroups of patients and with high dosages of a β, adrenergic drug it may have such an effect, although it is small and of doubtful clinical relevance." In fact, the table presented by Sears and Taylor supports this conclusion. Of all 15 available studies (ref 16 has not been published yet) there are only three (refs 5, 7, and 14) that showed a statistically significant increase in bronchial hyperresponsiveness during treatment with bronchodilators.

There was one study that showed a significant decrease in hyperresponsiveness whilst using a β agonist alone (ref 9). There is one study published on the effect of concomitant use of a β agonist in combination with anti-inflammatory drugs (refs 3) which pointed to an increase in bronchial hyperresponsiveness during continuous use of the β agonist. All other 11 studies did not show a significant change in bronchial hyperresponsiveness during or after stopping monotherapy with bronchodilators. The following remarks should be made. In the study of Kraan et al (ref 5) with 17 asthmatic

Reference Drug (μg/day) Design Weeks n Change in airway responsiveness Direction Magnitude (baseline, regular) p

2 Fenoterol 600 R, DB, PL 16 8 No change PD20 increased 16-3, 16-9
3 Fenoterol 1600 R, DB, PC, X 24 64 Increased PD20 5.26, 0.90
4 Fenoterol 1600 Open 16 11 No change PD20 4.7, 3.4
5 Terbutaline 2000 R, DB, PL 4 1 Increased PD20 43, 25
6 Terbutaline 1500 R, DB, PL 4 7 Increased PD20 0.84, 0.44
7 Terbutaline 2250 R, DB, PL 2 8 Increased PD20 0.9, 0.66
8 Terbutaline 2000 R, DB, PL 4 15 Increased PD20 0.84, 0.5
9 Terbutaline 750 R, DB, PL 2 years 53 Decreased PD20 95, 051
10 Terbutaline 2000 R, DB, PL 1 13 Decreased PD20 0.84, 0.44
11 Terbutaline 2000 R, DB, PL 24 91 Increased PD20 0.84, 0.5
12 Terbutaline 3000 R, DB, PL 2-4 No change PD20 95, 051
13 Salbutamol 500 Open 4 8 Increased PD20 0.84, 0.44
14 Salbutamol 800 Open 52 15 Increased PD20 95, 051
15 Salbutamol 1600 Open 4 8 Increased PD20 95, 051
16 Salbutamol 600 Open 96 58 Increased PD20 1.47, 0.9

R = randomised; DB = double blind; PC = placebo controlled; PL = parallel groups; X = crossover; dd = doubling dose.
subjects there was an increase in bronchial hyperresponsiveness only during the last two weeks of the study, but by the end of four weeks this increase had disappeared. In the study of Vathenen et al (ref 7) with eight asthmatic subjects it was observed that a (rebound) increase in hyperresponsiveness occurred, not whilst using the β agonist but afterwards. In our own study (ref 14) an increase in hyperresponsiveness was observed when using a β agonist in a selected group of 15 patients. These 15 patients were selected on the condition that they had not used any β agonists or β blockers for one year before the start of the study. They were part of a much larger group of 144 patients who, on average, did not show an increase in bronchial hyperresponsiveness during the use of the β agonist (ref 1, not presented in the table). Looking at the presented table, it seems that the more patients involved in these studies the less clear is the adverse prognosis of bronchial hyperresponsiveness during the continuous use of a bronchodilator. This underlines our conclusion that only in subgroups of patients might the continuous use of a β, adrenergic drug have an adverse effect on bronchial hyperresponsiveness. The only exception seems to be the study of Sears and Taylor themselves (ref 3) with a relatively large number of 64 patients. However, this is the only study in which patients were allowed to use anti-inflammatory drugs as well as their bronchodilator drugs.

As Sears and Taylor have already acknowledged, the observed changes in hyperresponsiveness were small. They found an increase between 0.5 and 1.5 doubling doses of the challenge test, which is virtually similar to the repeatability of the challenge test and is therefore of doubtful clinical significance.

The purpose of writing our editorial was not to present a neutral position in this important issue but to show that the general fear that exists among doctors and patients about the chronic use of bronchodilators does not need to be justified by the data available at this moment. We did not, and not, doubt that bronchodilators probably have a (small) negative influence on the long term prognosis of bronchial hyperresponsiveness in certain groups of asthmatic patients. Subgroup analyses of our own data have shown that especially allergic hyperresponsive asthmatic patients seem to have an increased progression of asthma with continuous use of a β agonist.1 Another important issue which still has to be settled is what additional bronchodilator drug should be used (and in what dose) when the patient receives a combination of an anti-inflammatory drug and a bronchodilator.

C.P. VAN SCHAYCK
C.L.A. VAN HERWAARDEN
Departments of General Practice and Pulmonary Medicine
Nijmegen University,
PO Box 9101,
6500 HB Nijmegen,
The Netherlands


Extrapulmonary effects of fenoterol and salbutamol in normal subjects

Newnham et al have attempted the difficult task of trying to dissect relative β1 and β2 mediated cardiovascular responses to large doses of salbutamol and fenoterol in normal subjects with a low dose of atenolol (June 1993;48:658-8). There are two issues: firstly, the comparative responses to similar doses of these agents by inhalation and, secondly, their selectivity at the β adrenoceptor.

Newnham et al showed that salbutamol and fenoterol in doses of 1 mg and 3 mg from metered dose inhalers led to similar increases in heart rate, stroke distance, and tremor, with fenoterol causing a slightly greater fall in serum potassium concentration and a greater rise in systolic blood pressure than salbutamol. Their findings suggest smaller differences between higher doses of salbutamol and fenoterol in extrapulmonary effects than other studies, whether the comparisons have been made in vitro, in vivo, or in different species.12 Invariably fenoterol has been found to be more potent in large doses than salbutamol. During intravenous preparations have found a 2-4 times greater effect on heart rate with fenoterol, and this has led to a tenfold difference in the concentration of intravenous solutions used routinely (500 μg/ml salbutamol compared with 50 μg/ml fenoterol).4 For the different findings of Newnham et al are unclear.

The attempts by the authors to dissect relative β1 and β2 effects have failed as they have shown that atenolol significantly attenuates the β1 mediated effect on heart rate, tremor, and serum potassium concentration. Other designs based on studies by Wellstein et al13 or Hall et al14 may enable such relative β receptor specificity to be shown.

J CRANE
C BURGESS
R BEASLEY
Department of Medicine,
Wellington School of Medicine,
Wellington,
New Zealand

C WONG
Department of Medicine,
University of Otago,
Dunedin,
New Zealand


authors' reply

In reply to the letter of Crane et al there are some fundamental issues which, discussed in the paper, require further clarification.

The purpose of our study was not to assess the relative potency of fenoterol and salbutamol, which requires careful study of asthmatic subjects to ascertain relative bronchodilator and systemic β2 receptor activity. The 25 mg dose of atenolol in our study was chosen on the basis of it producing relatively selective β1 blockade. It is, however, well documented that atenolol displays dose related β2 blockade,13 and so it is not, perhaps, surprising that even a 25 mg dose produced a degree of β2 antagonism. The important point is that a comparable degree of attenuation occurred with heart rate and potassium responses, both of which have been shown to be β1 mediated.14 Indeed, this occurred to the same extent with both fenoterol and salbutamol. If fenoterol had stimulated cardiac β2 receptors to a greater degree than salbutamol, one would have predicted atenolol to have antagonised the chronotropic response to fenoterol more than salbutamol. This was clearly not the case with the percentage attenuation by atenolol at the 4 mg dose being 14% for fenoterol and 16% for salbutamol. The percentage attenuation of the systemic blood pressure was also comparable for both fenoterol and salbutamol (8%). Thus, whilst fenoterol may exhibit greater β1 potency, there is no evidence for it being less selective in terms of relative cardiac β1/β2 receptor stimulation. It is also worth pointing out that in a study from Windom et al15 in asthmatic subjects there was no difference in either chronotropic or systemic blood pressure responses to fenoterol and salbutamol, in contrast with isoprenaline which produced greater effects, presumably β1 adrenoceptor mediated.

Our in vivo data are indeed supported by in vitro data in human right atria,16 showing that the relative pA2 values for practolol (β2 antagonist) and ICI 18 551 (β1 antagonist) were 5.47 and 8.24, respectively, for antagonism of the isotropic response to fenoterol. Taken together we believe that the body of evidence supports the hypothesis that the effects of fenoterol on the human heart are predominantly stimulated by cardic β1 receptors.

B J LIPWORTH
D M NEWNHAM
Department of Clinical Pharmacology,
Ninewells Hospital and Medical School,
Dundee DD1 9SY

5 Lipworth BJ, Tregaskis BF, McDevitt DG. Comparison of hypokalaemic, electrocardio-