Regular inhaled β agonist in asthma: effects on exacerbations and lung function

We read with interest the paper by Dr R Taylor et al (February 1993;48:134-4). In the discussion the authors refer to an abstract with results of our long term intervention study in children with asthma, and focus on the decrease in FEV1 that was seen after four months with regular inhaled salbutamol. Complete results of this study have recently been published.1 We think that the initial decrease can be explained by the fact that 55% of these patients were treated with inhaled corticosteroid and 48% with cromoglycate before this study. It is likely that withdrawal of anti-inflammatory treatment had resulted in a deterioration of FEV1. Another argument for this is that there is no further decrease occurring in FEV1, between four and 22 months (end of the study). The authors also refer to an earlier study by our group2 that showed a slight increase in airway responsiveness to methacholine in patients receiving regular treatment with terbutaline. Our recent study3 shows that airway responsiveness to histamine remained unchanged during 22 months on regular salbutamol. A review of the literature on the effect of β agonists on airway responsiveness also found no significant changes in airway responsiveness after long term treatment with these drugs.4

Our results do not support the recommendation of the authors that regular treatment with short acting β agonists should not be used in combination with inhaled corticosteroid.

E E M VAN ESEN-ZANDVLIET
K F KERREBIJN
Department of Paediatrics,
Subdivision of Paediatric Respiratory Medicine,
Eurazia University of Rotterdam,
University Hospital Sophia Children's Hospital,
Rotterdam, The Netherlands

AUTHORS' REPLY We are grateful to Dr Van Essen-Zandvliet and Professor Kerrebijn for highlighting the results of their important and well executed study. However, neither that investigation nor our own was designed to evaluate the efficacy of combination treatment with inhaled corticosteroids and β agonists, as they seem to suggest. Nevertheless, both offer important and consistent observations regarding the effects of β agonist treatment in chronic asthma.

They comment that after four months of treatment with regular inhaled salbutamol no further changes in FEV1, or PC20 were identified in their asthmatic subjects. On this basis they suggest that our system treatment with the β agonist salbutamol is unlikely to be having an adverse effect. It is important to note that the withdrawal rate due to treatment failure continued unabated throughout the long study period, so that after a median interval of 22 months 45% of patients in the β agonist treated group had to be withdrawn. This discrepancy between changes in FEV1, and “asthma control” was also a feature in our own study and is an important one for clinicians to note. Among our own 64 subjects severe exacerbations requiring hospital admission occurred in five and, of these, four occurred during the regular salbutamol treatment. Moreover, all of these events occurred after at least 16 weeks of treatment. By contrast, the adverse changes in FEV1, (mean = 0.15 litres) did not alter further after the first four weeks of regular fenoterol treatment. We do subject withdrawal over such a sustained interval is attributable to the washout effects of withdrawing anti-inflammatory therapy. An alternative explanation is that it is due to the adverse effects of regular β agonist treatment.

Secondly, the very high withdrawal rate in the group of patients receiving regular salbutamol was based on the results of subsequent PC20 measurements. Indeed, Dr Van Essen-Zandvliet acknowledges that a low PC20 at baseline was a predictor for subsequent withdrawal from the study. The impression that the PC20 did not alter substantially during regular salbutamol treatment is therefore false; only patients with a stable PC20 were able to continue in the study.

Although we did not specifically conclude that “regular treatment with short acting β agonists should not be used in combination with inhaled corticosteroids”, we certainly would agree with that statement. The results of both Dr Van Essen-Zandvliet’s study and our own indicate that no demonstrable benefits are obtained when using regular treatment with inhaled β agonists. Although the results of the Dutch study indicate that combined therapy with salbutamol and corticosteroids was undoubtedly effective, the relative contribution made by inhaled β agonist cannot be ascertained from their results. It may be that inhaled corticosteroids alone (with β agonist used only as needed) would result in benefits which are equal to, or even greater than, those obtained using the combination of treatments. The question of an adverse interaction between inhaled corticosteroids and β agonists has yet to be answered, but is one which requires urgent attention.

D R TAYLOR
University of Dunedin,
Dunedin, New Zealand
M R SEARS
McMaster University,
Hamilton, Ontario, Canada

Respiratory symptoms questionnaire for asthma epidemiology: validity and reproducibility

The validated asthma questionnaire reported by Dr K M Venables and co-workers (March 1993;48:214-9) will also be extremely useful for epidemiological studies of occupational asthma. It is combined in its present form with questions to elicit a temporal relationship with work.1 Such questions might take the form:

1. On holidays, are the problems you answered ‘YES’ to, better, worse or unchanged?
2. On weekends, are the problems you answered “YES” to, better, worse or unchanged?
3. On holidays, are the problems you answered “YES” to, better, worse or unchanged?

Such a questionnaire could be used with serial peak expiratory flow rate measurements1 in cross sectional studies to assess the prevalence and rate ratio of occupational asthma in industries where workers are exposed to known causative agents.

I M A KOHGEHUE
Occupational Health Unit,
Department of Preventive and Social Medicine,
University of Otago Medical School,
PO Box 913,
Dunedin, New Zealand


Chlamydia pneumoniae

As Dr TJ Marrie mentioned in his editorial (January 1993;48:1-4), we need to confirm the relationship between Chlamydia pneumoniae infection and airway irritability, and to find appropriate treatment. Hahn urged asthma researchers to consider the possibility that C pneumoniae infection could be one of the underlying (and potentially treatable) causes of adult asthma.

We have recently seen a 39 year old man with cough variant asthma and serologically confirmed C pneumoniae infection. Cough variant asthma is an occult form of asthma of which the only sign or symptom is chronic cough.2 His routine spirometric values were normal, but moderate bronchial hyperresponsiveness to acetylcholine was present. Serum IgE and peripheral blood eosinophils were increased and RAST scores revealed a positive response to grass pollen. Antibody titres of IgG, IgA, and IgM to C pneumoniae were 1:1024, 1:32 and <1:8, respectively. On the other hand, antibody titres of IgG to C psittaci and C trachomatis were 1:32 and <1:32, respectively. The complement fixation test for M pneumoniae was negative.

It is well known that macrolides and tetracyclines are effective treatment for chlamydial infections and that bronchodilator therapy is very useful for cough variant asthma. Holmes et al recommended that intrapulmonary broncheal inhalation is appropriate in patients with chronic cough following upper respiratory tract infection. Treatment with clariotromycin and inhaled oxtropin broncheal inhalation for two weeks was also successful. This case indicates that cough variant asthma may be another clinical expression of C pneumoniae infection.

M J KAWANE
Division of Respiratory Diseases, Department of Medicine, Myokocutia Hospital, Kashiwazaki Medical School, Kurashiki City, Okayama, 701-01 Japan

1 Hahn DL. Chlamydia pneumoniae infection and asthma. Lancet 1992;339:1173-4.