
Dr K M Kerr and colleagues claimed that malignant mediastinal lymph nodes are not larger than benign nodes in patients with lung cancer (May 1992;47:337-41). This surprised us as it differs from other results in the literature.1-3

We assessed 158 mediastinal lymph nodes resected from 37 cases of primary lung cancer and found the size of the lymph nodes to be significantly related to the presence of malignant disease. The largest lymph nodes were malignant in 34/37 cases (92%), including nodes in the lung parenchyma. The malignancy rate was 14% (1/7) for nodes less than 5 mm in diameter, and 89% (8/9) for those larger than 20 mm (p < 0.001). Lymph node diameter less than 5 mm or larger than 20 mm therefore has a high predictive value. The malignancy rates for nodes larger than 5, 10, and 15 mm in diameter were 24% (37/151), 37% (30/82), and 53% (15/28), respectively. A high rate of false positive or false negative results was present when both thresholds of 15 and 20 mm or more were used in the diagnosis of nodes between 10 and 19 mm in diameter.

We have reason to believe that metastatic disease is the most important factor influencing the size of lymph nodes, and the larger the lymph node the more probable is the presence of malignant disease. One cannot predict, however, the nature of a lymph node only by its size obtained by imaging. We agree with Dr Kerr that computed tomography can be used to guide lymph node sampling before operation, and mediastinoscopy should be recommended to every patient with lung cancer, whether the mediastinal lymph nodes are enlarged or not.

Guidelines for care during bronchoscopy

These guidelines have been prepared by the Standards of Care Committee, and agreed by the Executive Committee of the British Thoracic Society, at their meeting on 13 January 1993. The need for such guidelines was suggested by colleagues in Edinburgh and London.

Oxygen saturation monitoring and supplemental oxygen therapy

Most patients requiring bronchoscopy have lung disease of abnormal lung function and several of the procedures performed during bronchoscopy cause a lowering of arterial oxygenation. For these reasons it is recommended that patients undergoing bronchoscopy are monitored by pulse oximetry during the procedure. This not only allows arterial oxygen saturation to be monitored but also allows detection of dangerous tachycardias, bradycardias, or cardiac irregularities. Supplemental oxygen should be given to maintain the arterial oxygen saturation at or above 90%. Patients who become hypoxic and require oxygen during the procedure should continue to receive oxygen during the recovery period when the lowest oxygen saturation commonly occurs.

Resuscitation equipment

Standard cardiac and respiratory arrest resuscitation equipment should be available in the bronchoscopy suite including equipment for endotracheal intubation and defibrillation. Staff require training and regular updating in resuscitation skills.

Intravenous access

All patients given intravenous sedation should have continuous intravenous access through an indwelling line throughout the procedure.