LETTERS TO THE EDITOR

Bronchoalveolar lavage as a research tool

I enjoyed the timely review of bronchoalveolar lavage by Drs E H Walters and P V George (Thorax 1991;46:613-6) but take exception to several of their conclusions. They referred to their earlier work in which 3H2O was incorporated into the blood and airspace fluid and its movement between these compartments was measured. From this they calculated that 39% of the aspirated fluid flowed into the airspaces from the blood. I would argue that exchange of 3H2O between these compartments is driven by concentration differences and would occur regardless of whether or not there was any net movement of fluid. Net movement of fluid from the blood into the airspaces would dilute solutes present in the airspaces and the authors cite decreases in methylene blue concentrations seen by themselves and others to support their hypothesis. They did not, however, rule out diffusion of this small solute out of the airspaces or its reduction to colourless derivatives. Decreases in airway concentrations of 14C colloid, which they also observed, may be related to sedimentation or adherence of this indicator to epithelial membranes. When soluble macromolecules (labelled albumin or labelled dextran) have been instilled into the airspaces by several different investigators, no decreases in concentrations were detectable (see, for example, ref 2).

Bulk movement of water across the pulmonary epithelium is constrained by the high reflection coefficients of the epithelium to both small and large solute molecules, and movement of electrolytes and 35Cl- across the epithelium is too slow to suggest significant movement of fluid between these compartments during lavage. It can be calculated from these reflection coefficients that ultrafiltration of solute free fluid into the airspaces would require extreme pressures, which are not generated during lavage (> 5000 mm Hg).

RICHARD EFFROS
Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, Wisconsin 53226, USA

AUTHOR’S REPLY
I am grateful for the comments on our editorial comparing bronchoalveolar lavage from Professor Effros. Professor Effros perhaps assumes that the clinical technique of bronchoalveolar lavage is essentially the same as his elegant in vitro model of the fluid filled, perfused animal lung preparation. I don’t believe that this is really the case, and calculations and assumptions based on the latter are unlikely to apply to the former. Our data would suggest that bronchoalveolar lavage distorts the epithelial barrier in the bronchopulmonary segment studied, either by more excessive local inflation at the time of injection of fluid or at the time of aspiration, or both, resulting in the opening up of “unphysiological” intercellular pores with much lower reflection coefficients than argon would lead us to believe. The observed stimuli on relatively undisturbed whole lungs.

In our studies of water and solute “fluxes” at bronchoalveolar lavage to which he refers (his ref 1) the large influxes of water into the lavage fluid at aspiration were remarkably similar whether calculated indirectly by dilution of methylene blue or large molecular colloid “markers” or directly measured from bidirectional movements of tritiated water. It is difficult to interpret the possible artefacts which Professor Effros quite reasonably mentions could give such consistency. Our studies with tritiated water were precipitated only by the finding that larger molecular weight markers were diluted to a degree that could not reasonably be explained merely by incorporation of the putative lung epithelial lining fluid.

In addition, our recent work in our laboratory indicates that relatively large influxes of urea as well as water occur into bronchoalveolar lavage fluid at aspiration, even after minimal dwell time. This again emphasises that the assumptions that Professor Effros has built up from his studies on relatively stable pulmonary epithelial membranes, and even in his more recent whole lung lavage model in rats (his ref 4), don’t seem to apply to the acute and potentially locally disruptive procedure of bronchoalveolar lavage, which seems to induce some process of filtration across the bronchopulmonary epithelium, as well as movements due to the hydrostatic balance alone.

Finally, however, I need to point out that our emphasis has not really been on trying to define the mechanisms by which water and solutes move between blood stream and lavage fluid during the procedure, which are likely to be complex and multifactorial. Without better data on the surface area-volume-pressure relationships these likely are to remain somewhat speculative. We have been more interested in merely pointing out that relatively large movements of water and solutes between blood and lavage fluid do seem to be occurring at bronchoalveolar lavage and that conventional assumptions about the dilution and calculation of epithelial lining fluid are likely to be highly oversimplistic.

E H WALTERS
Chest Clinic and Regional Units for Occupational Lung Disease, Newcastle General Hospital; Newcastle upon Tyne NE4 6BE

BOOP and COP

I read with interest the editorial on obliterative bronchiolitis organising pneumonia and cryptogenic organising pneumonia (BOOP and COP) by Dr D M Geddes (August 1991; 46:545-7) and agree with his conclusion that BOOP and COP are essentially the same condition. I would like to point out one error in his references. Reference 2 in Dr Geddes’s editorial was not “anonymous” but by the German pathologist W Lange, who described the pathologic lesion of BOOP or COP as early as 1901 in his paper entitled “über eine eigentümliche Erkrankung der kleinen Bronchien und Bronchiolen (Bronchitis et Bronchiolitis obliterans)” (Dtsch Arch Klin Med 1901;70:342-64). He reported on two patients who presented with a pulmonary illness with fever, cough, increasing dyspnoea, and cracks on auscultation. The postmortem findings were described by Lange in detail, and he found organising exudates with plugs of granulation and young connective tissue that were located within small bronchi, bronchiole, and alveolus. These were exactly the features of the lesion now called BOOP or COP. Lange already recognised that the plugs always extend from the walls of bronchioles into the alveolar lumen, and never grow from the alveolar wall itself.

DM GEDDES
Consultant Physician
Royal Brompton and National Heart Hospital, London SW3 6JP

Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study

We read with some interest the study by Dr M Luengo and colleagues (November 1991; 46:803-6). In this study the authors suggest that, in the presence of corticosteroid associated osteoporosis, bone densitometry is less useful for detecting patients at risk of vertebral or non-vertebral fracture than in involutional (post-menopausal) osteoporosis. This is contrary to our own experience with dual energy x ray

Thorax: first published as 10.1136/thx.47.3.207-a on 1 March 1992. Downloaded from http://thorax.bmj.com/ on September 15, 2023 by guest. Protected by copyright.