Introduction

This issue of Thorax sees the start of a new feature presenting scientific updates in respiratory medicine. This will consist of a series of short reviews focusing on developments, mainly in the basic sciences, with implications for the understanding of respiratory diseases or their future management. Each review is selected by the writer, who has a research interest in the scientific area from which the review is derived. This will ensure an up to date content and relevance to respiratory medicine.

Seven reviewers will produce updates from across the spectrum of respiratory medicine, including oncology, asthma, pharmacology, molecular biology, immunology, and epidemiology. The first review, by Ron du Bois, outlines current understanding of how T lymphocytes recognise antigen and how such knowledge may lead to new options for management in interstitial lung disease. Future reviews will feature new host defence proteins and somatic gene treatment for α1 antitrypsin deficiency and cystic fibrosis.

How T cells recognise antigen: implications for lung diseases

R M du Bois

For many years histology and differential cell counts on bronchoalveolar lavage fluid have shown the lymphocyte to be a prominent component of inflammation in the lower respiratory tract in conditions such as fibrosing alveolitis, sarcoidosis, and extrinsic allergic alveolitis. More recently lymphocytes have been implicated in diseases that affect the airways predominantly, notably asthma and bronchiectasis. Lymphocytes can be broadly subdivided into B cells, which are responsible for antibody mediated immune responses, and T cells, which are responsible for a range of immune responses including delayed hypersensitivity, B cell "help," and cytotoxicity. T cells have an extensive repertoire of surface receptors which often reflect functional state (for example, CD25+ cells indicate an activated state).

Perhaps not surprisingly, several lung diseases that appear to have a strong immune component have been associated with the presence of T cells, many of which are activated. Recognition of antigen by T cells is the first step in a highly complex process that results in the generation of cytokines, inflammatory cell chemotaxis and activation, and, ultimately, the release of a wide range of other mediators that are responsible for inflammation within the lower respiratory tract.

T cells recognise antigen only when it is presented by an antigen presenting cell. Antigen presented on the surface of such cells in association (as a complex) with class I major histocompatibility complex (MHC) molecules (HLA-A, B, and C) is recognised by CD8+ suppressor-cytotoxic T cells. Antigen complexed with class II MHC molecules (predominantly HLA-DR, but also possibly DP or DQ) will be recognised by CD4+ helper-inducer T cells. The MHC-antigen complex is identified by T cell antigen receptors, which are most commonly of the α/β form. This nomenclature denotes that the receptor on the T cell surface consists of two glycoprotein chains (α 40–50 kDa α chain and a 40–45 kDa β chain) linked by disulphide bonds and that it is associated with the CD3 group of molecules, present on all mature T cells and necessary for surface signal transduction. The T cell antigen receptor structure closely resembles that of an immunoglobulin molecule. Each chain consists of a variable region and a constant region. The variable region contains a hypervariable segment, which confers antigen specificity on the molecule. Both the α and the β chains of the T cell antigen receptor have many individual members, which are grouped into families (for example, V(β)1, V(β)2, etc) based on gene sequences that are common to all members of an individual family. Theoretically up to 10^3 α/β T cell receptor variants could exist.

Recent studies have emphasised the impor-
tance of the T cell antigen receptor not only for the molecular biologist intent on understanding T cell repertoires and regulation of the inductive phase of the immune response but also for the clinical scientist. There is now a real possibility that a fuller understanding of the part played by T cells in the earliest phases of inflammation may provide new approaches to disease management.

Studies of T cells from the lungs and blood of a subgroup of patients with active sarcoidosis show that a specific family of T cell antigen receptors (Vβ8) are used preferentially by lymphocytes from such patients. Interestingly, the sequences of many of these molecules were identical, implying a common triggering mechanism. This suggests that an antigen driven process, acting through the T cell antigen receptor, is responsible for the activation and amplification of selected T cells. A similar observation has been made in rheumatoid arthritis, a specific family of T cells (Vβ14) being found in the joints but not the blood of patients with active disease. These clinical observations are consistent with findings from an animal model of extrinsic allergic encephalomyelitis, in which hyper-sensitivity responses to myelin basic protein are responsible for an immune response that results in demyelination. The immune response is limited to T cells bearing receptors with distinct variable regions. Treatment of the animals with monoclonal antibodies directed against the variable regions Vβ8 and Vβ13 results in a sustained deletion of those families of T cells and protection against extrinsic allergic encephalomyelitis. These clinical observations have also been induced in T cells from an atopic individual. In these studies O’Hehir et al. have shown that T cell clones, specifically reactive to house dust mite allergens of Dermatophagoides pteronyssinus and D farinae, are induced by pretreatment with Staphylococcus aureus enterotoxins, which act as “superantigens” and render the T cell antigen receptor unresponsive to the natural ligand. This induction of tolerance was receptor family specific. Although such studies have been performed in vitro, they have implications for diseases where the triggers are known, such as occupational asthma and extrinsic allergic alveolitis, and for disorders in which specificity of T cell triggering can be found without definitive antigen recognition, as in autoimmune or granulomatous lung diseases. If treatments could be designed to remove or minimise the effectiveness of a particular T cell clone, it is likely that the most important component of the antigen driven inductive phase of the inflammation would be removed.

It is too early to say whether such a theoretical, albeit attractive, approach to human disease will be possible in the near future; but treatment of human disease with antibodies against the lymphocyte receptors CD3 and CD4 has been undertaken, and antibodies are far less specific than antibodies directed against the T cell antigen receptor. The fact that such an approach is being considered so soon after the discovery of T cell antigen receptors is an acknowledgment of the speed at which scientific advances can be made since the development of sophisticated molecular and cellular biological techniques of investigation.