We were interested to read the article by Dr AR Webb and others (August 1989;44:674-5) showing patients’ preference for lignocaine gel over lignocaine aerosol for topical nasal anaesthesia preceding fibroptic bronchoscopy. Seven years ago we reported the same preference for lignocaine gel by patients in normal subjects. Nasal anaesthesia was equally effective with these two different methods, but the use of the aerosol was often associated with considerable nasal discomfort, an unpleasant taste, and epiphora, which did not occur with the gel. The additional advantage of the lubricating effect of the gel in passing the bronchoscope noted by Dr Webb and colleagues was also reported in our study. Furthermore, in our study plasma lignocaine concentrations were also measured to evaluate the safety of these different methods of administering lignocaine in both patients and a group of 10 normal subjects. Plasma lignocaine concentrations were lower after the same dose of lignocaine gel by comparison with the aerosol, suggesting that the gel might also be safer in terms of lignocaine toxicity.

Disturbance in respiratory mechanics in infants with bronchiolitis

I have read the report by Dr S Seidenberg and others (August 1989;44:660-7) on lung function in infants with bronchiolitis with considerable interest given our own studies in this field. Whereas their results relating to forced and passive expiratory flow are certainly in line with what we expect in this obstructive lung disease, it appears that they, like us, are in fact finding surprisingly low values for thoracic gas volume (TGV). It is true that in the acute phase their average TGV was 130% of predicted and in the chronic phase 126%, but the scatter was wide (see their SEM values) and several infants must have had values in or below their normal range. In our study in the chronic phase we noted many infants with TGV values below their normal range, which is somewhat higher than the normal range used by Dr Seidenberg and his colleagues. Given the differences in normal range I suspect that the two studies contain an appreciable number of bronchiolitic infants with surprisingly low TGV values. They do not really come to grips with the thorny problem of whether or not TGV measurements are reliable in bronchiolitis. How, for example, do they know that all their values (both the high and low ones) for acute and chronic phases are not underestimated? I was delighted to see their results, which seem to confirm our own anxieties and suggest that their results were not simply an artefact. I should be most interested in their further thoughts on this issue.

Adverse effect of additional weight on exercise capacity in patients with chronic obstructive airways disease

The conclusions of Dr R Swinhorn and others (September 1989;44:716-20) can be derived from common sense and an elementary knowledge of physics. Acceleration or deceleration of a mass requires a force. If the mass is increased, a greater force is needed for the same acceleration. Alternatively, if the force is unchanged, less acceleration is produced (force = mass × acceleration). In man the force is produced by muscle contraction, which means the energy is proportional to the force produced. When one walks at a steady pace, the legs alternately accelerate and decelerate but the body does not. Therefore the wearing of lead aprons will not substantially increase energy requirements, unless they are worn on the legs, not the thorax. Clearly, in step testing the whole body accelerates and decelerates in a vertical plane against gravity. So the wearing of lead aprons will make a difference to energy expenditure and hence oxygen consumption during this form of exercise.