Dose related effects of salbutamol and ipratropium bromide on airway calibre and reactivity in subjects with asthma

JOHN BRITTON, SIMON P HANLEY, HELEN V GARRETT, JOHN W HADFIELD, ANNE E TATTERSFIELD

From the Respiratory Medicine Unit, City Hospital, Nottingham

ABSTRACT The relationship between change in airway calibre and change in airway reactivity after administration of bronchodilator drugs has been investigated by comparing the effect of increasing doses of inhaled salbutamol and ipratropium bromide on the forced expiratory volume in one second (FEV₁), specific airways conductance (sGaw), and the dose of histamine causing a 20% fall in FEV₁ (PD₂₀) in six subjects with mild asthma. On each of 10 occasions measurements were made of baseline FEV₁, sGaw, and PD₂₀ after 15 minutes' rest, and followed one hour later, when the FEV₁ had returned to baseline, by a single nebulised dose of salbutamol (placebo, 5, 30, 200 and 1000 µg) or ipratropium (placebo, 5, 30, 200 and 1000 µg) given in random order. Measurements of FEV₁, sGaw, and PD₂₀ were repeated 15 minutes after salbutamol and 40 minutes after ipratropium. Salbutamol and ipratropium caused a similar dose related increase in FEV₁ and sGaw, with a mean increase after the highest doses of 0.76 and 0.69 litres for FEV₁ and 1.15 and 0.96 s⁻¹ kPa⁻¹ for sGaw. Salbutamol also caused a dose related increase in PD₂₀ to a maximum of 2.87 (95% confidence interval 2.18–3.55) doubling doses of histamine after the 1000 µg dose, but ipratropium bromide caused no significant change in PD₂₀ (maximum increase 0.24 doubling doses, 95% confidence interval −0.73 to 1.22). Thus bronchodilatation after salbutamol was associated with a significantly greater change in airway reactivity than a similar amount of bronchodilatation after ipratropium bromide. This study shows that the relation between change in airway reactivity and bronchodilatation is different for two drugs with different mechanisms of action, suggesting that change in airway calibre is not a major determinant of change in airway reactivity with bronchodilator drugs.

Several studies have confirmed an association between increased airway reactivity and diminished airway calibre in subjects with airflow obstruction but the cause of the association is not clear. There are reasons to expect that an increase in airway reactivity would lead to increased airflow obstruction, and vice versa that an increase in airflow obstruction would increase airway reactivity, by a combination of mechanisms. Alternatively, both airflow obstruction and increased airway reactivity may occur as a result of a common underlying disease process. Bronchodilator drugs such as β agonists, antimuscarinic agents, and methylxanthines have been shown to cause a decrease in airway reactivity in conjunction with bronchodilatation, but whether different drugs cause a similar change in airway reactivity for a given change in airway calibre has not been investigated in dose-response studies. If airway calibre is a major determinant of airway reactivity a consistent relation might be expected between change in airway calibre and change in reactivity after the administration of bronchodilator drugs with different mechanisms of action. This study investigated this relation by measuring change in airway calibre and reactivity after increasing doses of salbutamol and ipratropium bromide in subjects with mild asthma.

Methods

SUBJECTS
We studied three men and three women with asthma aged 21–39 years, all non-smokers. All had mild...
Dose related effects of salbutamol and ipratropium bromide on airway calibre and reactivity in asthma

stable asthma with a resting FEV$_1$ over 60% of the predicted value, an increase in FEV$_1$ of over 15% after 200 µg salbutamol administered by metered dose inhaler, and a provocative dose of histamine causing a 20% fall in FEV$_1$ (PD$_{20}$ FEV$_1$) of less than 1-8 µmol.22 Two subjects inhaled β agonists intermittently as required, four inhaled them regularly every day (maximum dose 800 µg daily), and two of these also inhaled steroids regularly. All treatment was withheld for eight hours before each study. The investigation was approved by the City Hospital ethics committee.

METHODS
FEV$_1$ was measured with a dry bellows spirometer (Vitalograph, Buckingham), the best of three attempts being accepted. Specific airways conductance (sGaw) was measured with the subject panting in a body plethysmograph (Fenyes and Gut, Basel, Switzerland) on line to a microprocessor, and calculated from the mean of six consecutive measurements, each measurement analysing three panting breaths.

Salbutamol and ipratropium bromide solutions for nebulisation were prepared immediately before each study by diluting stock solutions of salbutamol sulphate 5 mg/ml (Allen and Hanburys) and ipratropium bromide 0-25 mg/ml (Boehringer Ingleheim) with a 150 mM sodium chloride solution. Airway challenge tests were performed by the method of Yan et al.22 to a maximum dose of 16 µmol of histamine. Inhalation of saline was followed by doubling doses of histamine from 0-03 µmol until there was a 20% fall in FEV$_1$ from the post-saline value. PD$_{20}$ was estimated by linear interpolation on a log dose-response plot.

PROCEDURE
Subjects were studied at the same time on 10 different days, on which drug and placebo were administered according to a randomised protocol; this included four doses of ipratropium bromide plus ipratropium placebo (placebo I) and four doses of salbutamol plus salbutamol placebo (placebo S). The study was double blind, except that the operator was told that the procedure was either for salbutamol/placebo or for ipratropium/placebo so that measurements could be timed appropriately.

On each study day baseline FEV$_1$ and sGaw were measured after 15 minutes' rest and, provided that baseline FEV$_1$ was within 10% of that on day 1, the first histamine challenge test was carried out. The subject then rested for one hour before the FEV$_1$ and sGaw measurements were repeated. Salbutamol, ipratropium bromide, or 150 mM saline (placebo) solutions were then administered from an Inspiron nebuliser (Bard Ltd, Sunderland), which when driven by air at 8 litres/min emitted 4 ml of solution during eight minutes of tidal breathing. The nebuliser was primed with 5 ml of solution, at drug concentrations of 1-25, 7-5, 50, and 250 µg/ml, so that doses of 5, 30, 200, and 1000 µg of drug were nebulised. The same nebuliser was used for all studies on each subject. Measurements of sGaw, FEV$_1$, and PD$_{20}$ were repeated 15 minutes after the end of the salbutamol or the salbutamol placebo inhalation and 40 minutes after the ipratropium bromide or the ipratropium placebo inhalation.

DATA ANALYSIS
Change in FEV$_1$ and sGaw between the baseline value before the first histamine challenge and the post-drug value immediately before the second histamine challenge was calculated for each subject. Change in histamine PD$_{20}$ between the first and second histamine

<table>
<thead>
<tr>
<th>Mean (SEM) FEV1 (l) and sGaw (s$^{-1}$kPa$^{-1}$) at baseline and before and after drug, geometric mean PD${20}$ (µmol) at baseline and after drug, and geometric mean (SEM) change in PD${20}$ (APD${20}$) between baseline and after drug (doubling doses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (µg)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SALBUTAMOL</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>IPRATROPiUM</td>
</tr>
<tr>
<td>Placebo</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>Mean</td>
</tr>
</tbody>
</table>

sGaw—specific airways conductance; PD$_{20}$—dose of histamine causing a 20% fall in FEV$_1$.
Results

The mean (SEM) FEV₁ at baseline and one hour after the first histamine challenge (pre-drug value) was 3·00 (0·05) and 3·10 (0·07) litres. Individual values for FEV₁ one hour after the histamine challenge were greater than 90% of baseline on all 60 study days. The mean sGaw at baseline and one hour after the first challenge was 0·63 (0·04) and 0·68 (0·06) s⁻¹ kPa⁻¹ respectively.

Neither of the two placebo inhalations caused a significant change in FEV₁, sGaw, or PD₂₀ (table). There was a linear increase in FEV₁ and sGaw with increasing log dose of salbutamol and ipratropium bromide, which was similar and significant for both drugs (p < 0·001 and p < 0·01 for both indices after salbutamol and ipratropium bromide respectively; fig 1). There was a linear increase in log PD₂₀ with increasing doses of salbutamol (p < 0·001) but not with ipratropium bromide (p = 0·56: fig 2), and this relationship was significantly different for the two drugs (p < 0·05). The mean increase in PD₂₀ after the 1000 µg dose of salbutamol was 2·87 doubling doses (95% confidence interval 2·18 to 3·55) and after ipratropium bromide was 0·24 doubling doses (95% confidence interval −0·73 to 1·22). With salbutamol, the increase in log PD₂₀ was related to increase in FEV₁ and sGaw (p < 0·001 for both indices), but there was no significant linear relation between change in log PD₂₀ and either FEV₁ or sGaw for ipratropium bromide (p = 0·17 and 0·83: fig 3). The difference between the drugs in this respect was highly significant for both FEV₁ (p < 0·01) and sGaw (p < 0·001).

Fig 1 Change in FEV₁ (litres) and specific airways conductance (sGaw, s⁻¹ kPa⁻¹) with increasing dose (µg) of salbutamol (○—○) and ipratropium bromide (△—△).

Fig 2 Change in histamine PD₂₀ (µmol) with increasing dose (µg) of salbutamol (○—○) and ipratropium bromide (△—△).
Dose related effects of salbutamol and ipratropium bromide on airway calibre and reactivity in asthma

Discussion

Although a relation between airway reactivity and airway calibre is widely recognised it is still uncertain whether airway hyperreactivity causes bronchoconstriction, whether pre-existing bronchoconstriction causes airway hyperreactivity, or indeed whether both airway hyperreactivity and airflow obstruction are the result of a common underlying disease process. We have investigated the relation between airway calibre and airway reactivity in subjects with mild asthma by comparing changes in the two variables after two bronchodilator drugs with pharmacologically distinct mechanisms of action.

In the subjects with mild asthma we studied significant dose related bronchodilatation occurred after both salbutamol and ipratropium bromide in doses up to 1000 µg, and within this dose range ipratropium bromide and salbutamol were equipotent. Previous reports have in general suggested that antimuscarinic agents are less effective bronchodilators than β₂ adrenoceptor agonists in patients with asthma, but these studies have compared conventional clinical doses of the two drugs. Higher doses of ipratropium bromide have been shown to cause greater bronchodilatation than conventional doses in patients with both asthma and chronic bronchitis, but the dose-response relationship of β₂ agonists and ipratropium bromide appear not to have been compared previously in asthmatic subjects.

In our study bronchodilatation with salbutamol was associated with a dose-related decrease in airway reactivity, as described previously with fenoterol. The maximum increase in geometric mean PD₂₀ after 1000 µg salbutamol was 2.87 doubling doses of histamine, an increase of the same order of magnitude as that reported after single doses of β₂ agonists.

We did not, however, find a similar dose related change in airway reactivity after ipratropium bromide, even though a similar degree of bronchodilatation was achieved. We saw no evidence of bronchoconstriction after ipratropium bromide, as has been seen in some studies and attributed to the preservative, benzalkonium chloride, though, because our measurements were carried out 40 minutes after administration of ipratropium bromide, a relatively short lived episode of bronchoconstriction may have gone undetected. It would not easily explain, however, the lack of association between change in PD₂₀ and FEV₁ at a time when bronchodilatation had occurred.

Previous studies looking at change in non-specific airway reactivity after single doses of antimuscarinic agents have shown variable results but suggest that the effect is relatively small, ranging from a mean increase in reactivity to histamine by 0.2 doubling doses in one study to a maximum reduction in reactivity of 1.5 doubling doses. None of these studies has looked at the effect of increasing doses of drugs on bronchial reactivity. The maximum increase in PD₂₀ after ipratropium bromide of 0.32 doubling doses in the present study was within the range of increase previously described, though we were unable to demonstrate a dose-response relationship for change in PD₂₀.

When doses of salbutamol and ipratropium that were equipotent in terms of bronchodilatation were compared salbutamol produced a much greater increase in PD₂₀, suggesting that bronchodilatation per se had little effect on airway reactivity. The fact that bronchodilatation with ipratropium was associated with little if any change in airway reactivity is in keeping with the findings of studies that have looked at the effect of cholinergic agonists rather than antagonists on bronchoconstrictor responses.
constriction with methacholine did not alter histamine
PD$_{35}$ sGaw in the study of Chung and Snashall, nor
did it alter the airway response to adenosine in the
study of Hardy and colleagues. Thus, in general,
changes in the level of cholinergic stimulation appear
to have relatively little effect on airway reactivity to
other pharmacological agonists. How far this is true of
other constrictor agonists is more debatable. Some
studies have shown an interaction between prosta-
glandin D$_{2}$ and histamine whereas others have not, and
the same is true for other mediators. Such
interactions as have been seen have been fairly modest,
and it is not clear whether they are pharmacological or
physiological in origin.

Beta agonists have been shown to be functional
antagonists on bronchial smooth muscle in vitro, causing
inhibition irrespective of the contractile stimulus; and this is the likely cause of the reduction in airway reactivity with these drugs in this and other studies. Ipratropium bromide and β agonists have different effects on other aspects of airway function that could affect airway reactivity and airway calibre, such as mast cell mediator release, mucosal oedema formation, and mucociliary clearance; and β agonists may modulate neurotransmission in parasympathetic ganglia. None of these actions, however, as far as they are understood, would easily explain the different effects of β agonists and ipratropium on airway dilatation and reactivity.

Our findings raise the important clinical question of
whether the effect of salbutamol on airway reactivity offers clinical benefit over and above bronchodilatation alone. Certain drugs, such as calcium antagonists, have been shown to decrease airway reactivity by up to two doubling doses while causing little if any bronchodilatation. These drugs have been disappointing in practice, however, suggesting that improvement in bronchial reactivity alone may not be of clinical benefit. Clinical trials are therefore indicated to determine whether at equipotent bronchodilator doses β agonists are more effective than antimuscarinic agents in the treatment of asthma and, if they are, to identify the mechanism underlying this advantage.

References

1. Parker CD, Bilbo RE, Reed C. Methacholine aerosol as
2. Klein RC, Salvaggio JE. Nonspecificity of the broncho-
constricting effect of histamine and acetyl-beta-
methylcholine in patients with obstructive airway
3. De Vries K, Booy-Noord H, Van der Lende R, Tammeling GJ, Sluiter HJ, Orie NGM. Reactivity of
5. Ramsdell JW, Nachtwey FJ, Moser KM. Bronchial
6. Ramsdale EH, Morris MM, Roberts RS, Hargrave FE. Bronchial responsiveness to methacholine in chronic
bronchitis: relationship to airflow obstruction and cold
8. Taylor RG, Joyce H, Gross E, Holland F, Pride NB. Bronchial reactivity to inhaled histamine and annual
rate of decline in FEV$_{1}$ in male smokers and ex-smokers. Thorax 1985;40:9–16.
10. Tattersfield AE. Measurement of bronchial reactivity: a
11. Casterline CL, Evans R, Ward GW. The effect of
atropine and albuterol aerosols on the human bron-
12. Cockcroft DW, Killian DN, Mellon JJA, Hargrave FE. Protective effect of drugs on histamine-induced
13. Nair N, Bewtra A, Towner G. Protection by Sch-1000
and metaproterenol against bronchoconstriction [ab-
methacholine- and histamine-induced broncho-
15. Salome CM, Schoeffel RE, Woolcock AJ jr. Effect of
aerosol and oral fenoterol on histamine and metha-
dose response relationships in normal and asthmatic
17. Chung KF, Snashall PD. Methacholine dose response
curves in normal and asthmatic man: effect of starting
conductance and pharmacological antagonism. Clin
18. Salome CM, Schoeffel RE, Yan K, Woolcock AJ. Effect of
aerosol fenoterol on the severity of bronchial
of bronchial provocation with histamine to compare
the pharmacodynamics of inhaled albuterol and
20. McWilliams BC, Menendez R, Kelly HW, Howick J. Effects of theophylline on inhaled methacholine and
Dose related effects of salbutamol and ipratropium bromide on airway calibre and reactivity in asthma

