Bronchoalveolar lavage cell populations in bleomycin lung toxicity

DOROTHY A WHITE, MARK G KRIS, DIANE E STOVER

From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York

Bleomycin is an antineoplastic drug with a well documented capability of causing pulmonary fibrosis.1 Bronchoalveolar lavage studies performed with animal models of bleomycin toxicity have shown accumulation of inflammatory cells in the alveoli before the development of fibrosis.2,3 Polymorphonuclear leucocytes are the first cells to appear and are consistently present after the acute injury.2,3 Eosinophils and lymphocytes in lavage fluid have also been found to be transiently increased early in the development of fibrosis.2,4 In this paper we report lavage cell differentials in four patients with bleomycin pneumonitis. Our findings are similar to those obtained in patients with idiopathic pulmonary fibrosis and are also consistent with the results of studies on animal models of bleomycin toxicity.

Methods

The four patients with bleomycin toxicity were referred to the pulmonary service at Memorial Hospital for evaluation of infiltrates or respiratory symptoms (or both) occurring during bleomycin administration. All were non-smokers. Data on the patients are given in table 1. Pulmonary function was assessed in three patients and showed evidence of interstitial disease with a low diffusing capacity in each case, including patient number 3, who had a normal chest radiograph. Investigations included bronchoscopy with bronchoalveolar lavage and transbronchial biopsy. Cultures and special stains of bronchoalveolar specimens showed no evidence of infection. Biopsy specimens showed hyperplasia of type II pneumocytes, consistent with a drug effect, in all patients and fibrosis was present in three cases. All the patients were treated with corticosteroids only and no other cause of interstitial disease was identified during follow up over several months.

A control group consisted of six patients who underwent bronchoalveolar lavage and whose lungs either were normal or had only a local lesion. Their average age was 50 (SD 4) years and all were non-smokers.

Bronchoalveolar lavage was performed in the usual manner as previously described.6 Cells were removed from the lavage fluid by centrifugation (500 g for 10 minutes). The total number of cells present was determined with a haemocytometer and differential cell counts were performed on cytocentrifuge preparations with Wright’s stain.

Statistical analyses were performed with the Wilcoxon two sample rank sum test and Student’s t test.

Results

Bronchoalveolar lavage samples from patients with bleomycin pulmonary toxicity contained 7·7 × 10⁶ cells/100 ml lavage fluid, which was similar to the 6·5 × 10⁶ cells/100 ml in our control subjects. The differential cell count (table 2) showed significantly greater percentages and absolute numbers of polymorphonuclear leucocytes and eosinophils in those with bleomycin toxicity than in controls (p < 0·01).

Discussion

Bronchoalveolar lavage is a valuable technique for sampling lower respiratory cells and secretions in diffuse interstitial lung disease.6 Investigations in animal models of bleomycin toxicity have shown serial changes in lavage fluid during development of fibrosis. Thrall et al7 found that after intratracheal injection of bleomycin in the rat there was a significant influx of inflammatory cells. Neutrophils were the first to appear and increased percentages persisted even after the total number of cells recovered returned to normal. Increased percentages of lymphocytes were noted in the lavage fluid for a shorter time early in the development of fibrosis, and transitory influx of eosinophils was also found.2,3

Fahey et al3 treated mongrel dogs with twice weekly intravenous bleomycin, which led to histologically documented fibrosis after 14–16 weeks of treatment. A significant increase in the percentage of lavage polymorphonuclear leu-
The development of overt pulmonary toxicity might be helpful in assessing the early inflammatory response as seen in animals and in suggesting which patients are at risk of developing interstitial fibrosis.

References