Effect of positive end-expiratory pressure on intrapulmonary shunt at different levels of fractional inspired oxygen

A OLIVEN, U TAITELMAN, F ZVEIBIL, AND S BURSZTEIN

From the Intensive Care Department, Rambam Medical Centre, Haifa, Israel

ABSTRACT In 10 patients undergoing ventilation, venous admixture was measured at different values of positive end-expiratory pressure (PEEP). The measurements were performed at the level of fractional inspired oxygen (FiO₂) at which each patient was ventilated, and at FiO₂=1. In patients ventilated at FiO₂ between 0.21 and 0.3 venous admixture was not modified by PEEP, while in patients ventilated with FiO₂ between 0.4 and 0.6, venous admixture decreased significantly (p<0.01). With FiO₂=1, increased PEEP produced a reduction in venous admixture in all cases (p<0.05). These observations suggest that in patients similar to ours, PEEP does not reduce venous admixture at low levels of FiO₂ (0.21-0.3), and the observed reduction with PEEP at FiO₂=1 may be misinterpreted.

In patients with acute respiratory failure, positive end-expiratory pressure (PEEP) has been said to reduce pulmonary venous admixture and improve arterial blood oxygenation. The efficiency of PEEP can thus be evaluated by its influence on venous admixture. Most studies dealing with venous admixture are performed at FiO₂=1. However, modifications of FiO₂ are known to alter shunt values. It is not clear whether the beneficial effect of PEEP on pulmonary shunting at lower levels of FiO₂ is the same as at FiO₂=1. In this report we describe the results of investigations carried out on patients submitted to various levels of PEEP at different values of FiO₂.

Patients and methods

The study was conducted on 10 adult patients ventilated with a Bennett MA-1 respirator for various reasons (table 1). Venous admixture was calculated without PEEP, and again at 5, 10, and 15 cm H₂O PEEP, after a 15-minute period of equilibrium at each PEEP level. For each patient measurements were performed at the FiO₂ as determined by the clinical status, and repeated at FiO₂=1. The patients were sedated, and vital signs and minute volume were repeatedly checked, in order to confirm steady state conditions. Blood samples were drawn simultaneously into heparinised glass syringes from an indwelling arterial line and from a pulmonary artery catheter (Edwards Model 7FD). The venous admixture was calculated from the shunt equation:

$$Q_{sp} = \frac{\text{SaO}_2 - \text{SaO}_2}{\text{CaO}_2 - \text{Cvo}_2}$$

Where: [SaO₂] = 1.39 · Hb · (Sao₂ + 0.0031PaO₂) - PACO₂

[Cvo₂] = 1.39 · Hb · (SatO₂ + 0.0031PVO₂)

For Cvo₂ the alveolar air equation was used:

$$\text{PAO}_2 = \frac{\text{FiO}_2 (P_{Ba} - P_{H_2}O)}{1 - \text{FiO}_2}$$

and the respiratory quotient (RQ) was calculated for patients ventilated with FiO₂ between 0.21 and 0.3 according to:

$$RQ = \frac{\text{FECO}_2 (1 - \text{FiO}_2)}{\text{FiO}_2 (1 - \text{FeO}_2 + \text{FECO}_2 - \text{FeO}_2)}$$

For respiratory gases oxygen concentrations were measured using a paramagnetic oxygen analyser (Servomex OA-250) and carbon dioxide concentrations were determined with the Godart Capnograph. Blood gases and pH were measured with the Astrup Radiometer apparatus. Oxygen saturation was calculated according to the Gomez formula. All calculations, including
Table 1 Effect of PEEP on venous admixture at indicated FIO\(_2\) and at FIO\(_2\) = 1

<table>
<thead>
<tr>
<th>Diagnostic</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>FIO(_2)</th>
<th>PEEP (cm H(_2)O)</th>
<th>FIO(_2)</th>
<th>PEEP (cm H(_2)O)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Multiple trauma, sepsis</td>
<td>M</td>
<td>46</td>
<td>0.21</td>
<td>0.26</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Multiple trauma, acute</td>
<td>M</td>
<td>64</td>
<td>0.21</td>
<td>0.33</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>Chronic obstructive airways disease,</td>
<td>M</td>
<td>74</td>
<td>0.21</td>
<td>0.18</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Brain contusion, pneumonia</td>
<td>F</td>
<td>40</td>
<td>0.30</td>
<td>0.36</td>
<td>0.34</td>
<td>0.32</td>
</tr>
<tr>
<td>Burns 85%</td>
<td>F</td>
<td>32</td>
<td>0.20</td>
<td>0.17</td>
<td>0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>Chest trauma</td>
<td>M</td>
<td>64</td>
<td>0.40</td>
<td>0.32</td>
<td>0.27</td>
<td>0.35</td>
</tr>
<tr>
<td>Peritonitis, sepsis</td>
<td>M</td>
<td>78</td>
<td>0.41</td>
<td>0.34</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>Peritonitis, pneumonia</td>
<td>F</td>
<td>72</td>
<td>0.47</td>
<td>0.33</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>Pneumonia, cerebrovascular accident</td>
<td>M</td>
<td>72</td>
<td>0.60</td>
<td>0.38</td>
<td>0.36</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Statistics were performed on a PDP 11/05 computer.

Results

The 10 patients were divided into two groups according to the FIO\(_2\) indicated by their clinical condition. The first group was ventilated at FIO\(_2\) between 0.21 and 0.3, and the second group at FIO\(_2\) between 0.4 and 0.6. Table 1 contains a summary of the shunt values in both groups as measured at the patient's required FIO\(_2\) and at FIO\(_2\)=1.

In Fig 1 the influence of PEEP (from 0 to 15 cm H\(_2\)O) on PaO\(_2\), CaCO\(_2\), a-vDo\(_2\), and intrapulmonary shunt is compared during ventilation with FIO\(_2\) between 0.21 and 0.3 and at FIO\(_2\)=1. In the first instance PEEP has little influence on these values. In the same patients however, the same procedure, but at FIO\(_2\)=1, resulted in a significant decrease in the intrapulmonary shunt (p<0.05).

Figure 2 depicts the results in the five other patients. In this group increased PEEP induced a significant increase of PaO\(_2\) and CaO\(_2\) (p<0.01), and a significant decrease in shunt (p<0.01) during ventilation with FIO\(_2\)=0.4-0.6, as well as during ventilation with FIO\(_2\) equal to unity (increase in PaO\(_2\) and CaO\(_2\), p<0.05, and decrease in shunt p<0.05). A slight increase of a-vDo\(_2\) in these patients was not significant at either level of FIO\(_2\).

Discussion

In 1942, Berggren suggested a method of calculating intrapulmonary venous admixture by the inhalation of pure oxygen, and thus two of the problems associated with shunt determination were eliminated. By using an increased oxygen concentration, it is possible to avoid the shunt effect caused by the perfusion of partially ventilated alveoli. This method thus allows the determination of the "true shunt", which is caused by an admixture of venous blood from non-ventilated parts of the lung. The second problem is the difficulty in measuring the alveolar oxygen concentration required for intrapulmonary shunt calculations. This can be measured using a fast response oxygen analyser, or calculated using the alveolar air equation. Since fast response oxygen.
Effect of positive end-expiratory pressure on intrapulmonary shunt at different levels

It is obvious that variations of Fio₂ modify the value of the shunt, it is also evident that measurements of venous admixture should be performed at the particular Fio₂ inhaled by the patient, as indicated by the clinical status. The clinical value of this form of shunt calculation is also preferable, as it takes into account changes in ventilation-perfusion disturbances when the V/Q ratio is greater than zero. The difficulty in calculating the venous admixture with values of Fio₂ lower than unity does not justify shunt measurements with pure oxygen. Moreover, we found that usually another method can be used to eliminate the "correcting factor" for simplifying the alveolar air equation. When Fio₂ is higher than 0.3, one can assume the RQ value as constant and equal to unity, as usual variations of the RQ values cannot modify the calculated shunt. We calculated the venous admixture at the patient's Fio₂ with RQ values varying from 0.6 to 1.4, and it became apparent that only in patients ventilated with an Fio₂ = 0.21 did modification of the RQ values influence the calculated venous admixture, while for all Fio₂ values higher than 0.29 venous admixture varied only slightly (table 2). For these reasons, in patients with an enriched concentration of oxygen, which is usually the case, one may assume for purposes of calculation that the RQ is equal to unity, and eliminate the "correcting factor" (Fio₂ + (1 − Fio₂)/1). However, in patients breathing room air, or air slightly enriched with oxygen, the shunt has to be calculated using the real RQ values.

Most of the studies on the influence of PEEP on venous admixture were performed on patients ventilated with Fio₂ = 1. With few exceptions, a decrease in shunt value was usually found with PEEP, and the shunt calculation was simplified with an increased FRC. Therefore, venous admixture is considered as one of the main factors in evaluating "optimal PEEP". Considering the influence of Fio₂ on the calculated pulmonary shunt found

The table shows the influence of respiratory quotient values on the calculated shunt at different levels of Fio₂. Patients were divided according to their Fio₂, and mean pulmonary shunt of each group was calculated, using the measured blood gas values and assuming values of RQ varying from 0.6 to 0.4.

<table>
<thead>
<tr>
<th>Fio₂</th>
<th>RQ</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
<th>1.2</th>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.23</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>0.29-0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>0.40-0.41</td>
<td>0.24</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.47-0.60</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

Fig 2. Effect of PEEP on PaO₂, CaO₂, a-vDO₂, and venous admixture, with a Fio₂ value between 0.4 and 0.6, and with Fio₂ = 1 (mean values of five patients).

Analysers are not always available and the resolution of the alveolar air equation requires the determination of FEO₂ and FICO₂ the use of Fio₂=1 will greatly simplify calculation for the venous admixture. Indeed, at Fio₂=1 the "correction factor" (Fio₂ + (1 − Fio₂)/RQ) is cancelled to unity, and the alveolar air equation becomes: PaO₂ − Fio₂ (PBar−PH₂₀) − Pcao₂. Inhalation of pure oxygen is therefore widely used during venous admixture measurements for clinical and scientific purposes. However, it is now well documented that high Fio₂ influences the pulmonary shunt by itself. Several workers found an increase in the pulmonary shunt after high Fio₂ administration, explained by a reduction in the functional residual capacity (FRC) because of absorption atelectasis. This inverse correlation between FRC and venous admixture has been demonstrated previously. Otherwise, the shunt may decrease when Fio₂ increases.
in our patients, it is questionable, however, whether the observed influence of PEEP on venous admixture at FiO$_2$ equal to unity reflects the effect of PEEP at lower levels of FiO$_2$.

In this study PEEP had no influence on venous admixture at low levels of FiO$_2$ (0.21–0.3), suggesting that PEEP has little value in patients who can be ventilated at this FiO$_2$. The significant reduction in venous admixture produced by PEEP in the same patients at FiO$_2$=1 demonstrates that, in order to evaluate the real effect of PEEP on venous admixture as a guide to therapy, measurements have to be carried out at the patient’s required FiO$_2$. At higher levels of FiO$_2$ the influence of FiO$_2$ variations on the PEEP effect is apparently less important; the reduction in venous admixture obtained with PEEP in patients ventilated at FiO$_2$=0.4–0.6 is similar to that observed when they were ventilated at FiO$_2$=1.

We have shown that the influence of PEEP in our patients varied with the value of FiO$_2$, and that its effect on pulmonary shunt was absent when FiO$_2$ was lower than 0.3. Assuming that PEEP increases FRC, while high FiO$_2$ decreases it, the beneficial effect of PEEP at high FiO$_2$ could be partially explained by the reduction of this side effect of the high FiO$_2$, but further ventilation-perfusion alterations as well as variations in pulmonary resistance and pulmonary fluid content must be considered. It is possible that for special situations, as in pulmonary oedema or drowning, PEEP could be effective at low FiO$_2$, but none of our patients had these conditions.

In summary, our results suggest that PEEP does not influence the intrapulmonary shunt at low levels of FiO$_2$ (0.21–0.3). When FiO$_2$ is greater than 0.3 the calculation of venous admixture can be simplified by neglecting the “correction factor” of the alveolar air equation.

References

Effect of positive end-expiratory pressure on intrapulmonary shunt at different levels

