Maximum volumes in excised human lungs: effects of age, emphysema, and formalin inflation

N Berend, C Skoog, L Waszkiewicz, and W M Thurlbeck

From the Department of Pathology, Health Sciences Centre, Winnipeg, Manitoba, Canada

ABSTRACT The volume of air at a transpulmonary pressure (PL) of 25 cmH_2O was measured in 28 emphysema-free and 39 emphysematous excised adult human lungs and in the lungs of 53 infants and children. In the adult emphysema-free lungs, this volume (V25) was significantly correlated with body length in males but, corrected for body length, not significantly correlated with age in either males or females. V25 was on the average 20 per cent larger than predicted TLC in non-emphysematous lungs in vivo. The lungs were also inflated and fixed with formalin at a constant PL of 25 cm H_2O and their volume measured (V1). Marked and variable underinflation compared to V25 occurred in the adult lungs and Vl minus lung weight averaged 75% of V25 and 91% of predicted TLC. In infants and children, the ratio of Vl minus lung weight to V25 averaged 1.08 with a range of 0.58 to 1.84. The larger the lungs, the smaller the ratio, suggesting that fixation played a role in producing the small Vl. In the emphysematous lungs, a significant correlation between the degree of emphysema and V25 was found. However, a statistically significant increase in V25 only occurred when the emphysema grade was greater than 5.

Many studies have demonstrated a relationship between total lung capacity (TLC) and height, age and height, or height and weight in normal subjects. Since TLC is governed by the interaction of lung elastic properties, chest wall mechanics, and inspiratory muscle strength, it is of interest to document maximum lung volumes in excised lungs in which only lung elastic properties are a factor.

In patients with emphysema, TLC has been shown to be increased in some studies, but not in others, and there is uncertainty as to what degree of emphysema is necessary to produce such a change.

In morphometric studies of lung structure, it is common practice to inflate the lungs with a liquid fixative at a constant transpulmonary pressure (PL) of 25 cmH_2O (2.5 kPa). It has been shown that the lung volume attained by this method correlates with predicted TLC in life but that, in individual lungs, marked under and overinflation occurs.

In this study, we measured the volume of air in excised lungs distended at a PL of 25 cm H_2O (V25) and the volume of the lungs fixed in formalin at a constant PL of 25 cmH_2O (VL) of 28 non-emphysematous and 39 emphysematous excised human lungs in order to define: (1) the relationship of V25 to age and height in non-emphysematous lungs, (2) the relationship of V25 to the degree of emphysema, and (3) the relationship of VL to V25.

Methods

Sixty-seven lungs (eight right, 59 left, 23 female, 44 male) were obtained at necropsy from subjects who died out of hospital from non-respiratory causes. Lungs with acute or chronic lung disease other than chronic bronchitis or emphysema were excluded. The pulmonary vasculature was ligated, the lungs weighed, the main bronchi cannulated, and the lungs tested for leaks. When small leaks were present, these were repaired by ligature or Krazy Glue® (Krazy Glue Inc, Chicago, Illinois). The lungs were degassed and placed on a moist tray inside a volume displacement plethysmograph and inflated to a PL of 30 cmH_2O (3 kPa). PL being measured with a Validyne DP15 pressure transducer. Volume change was measured with a Krogh spirometer. After the third inflation, the volume was measured first at a PL of 30 cmH_2O (V30) and then...
at a PL of 25 cmH₂O to make sure that the lungs were on the flat part of the expiratory pressure-volume curve. The manoeuvre was then repeated to check for reproducibility. In a separate experiment, three lungs were inflated to a PL of 20 cmH₂O (2 kPa) and then to a PL of 30 cmH₂O in order to study the effects of varying the maximum inspiratory PL on lung volume. The average increase in lung volume at the high pressure was only 3%. Increasing the PL would, therefore, not lead to appreciably higher lung volumes and would also be impracticable as the incidence of leaks and interstitial emphysema increases substantially.

The lungs were removed from the plethysmograph and inflated with 10% buffered formalin at a constant PL of 25 cmH₂O using a modification of the apparatus described by Heard.15 The lungs were observed when first inflated with formalin from a PL of zero and apparent complete inflation occurred within a few minutes in all cases. Constant inflation pressure of 25 cmH₂O was then maintained for two to three days. The bronchus was clamped and the lung volume measured by water displacement. Total lung volume (VT) was estimated by assuming the same proportions for left and right lungs as stated above. The lungs were sliced in a parasagittal plane and paper mounted whole lung sections produced from midsagittal slice. These were used to score the degree of emphysema on an arbitrary scale of 0-100.19 An adjacent to midsagittal slice from each lung was impregnated with barium sulphate and examined under the dissecting microscope to facilitate detection of minor degrees of emphysema.

In a separate study, the disease-free lungs from 53 neonates, infants, and children were similarly inflated with air to a PL of 25 cmH₂O and subsequently formalin fixed at the same pressure. The ratio of (VT minus lung weight)/V₂₅ was calculated for all the lungs. Lung weight was subtracted from VT since VT includes the volume of lung tissue and this was assumed to have a density of 1.0.

The relationship of V₂₅ to age, postmortem body length (cm), and emphysema grade was determined using regression analysis. Predicted TLC during life for height and age were calculated using the data of Knudson et al1 (TLC related to height only) and Goldman and Becklake2 (TLC related to age and height).

Results

Twenty-eight lungs including those of 10 females were found to be free from emphysema. The ratio ± SD of V₂₅ to V₂₀ in these lungs was 0.997 ± 0.005. The age, sex, observed V₂₅, and ratios of V₂₅ to predicted TLC in life using the data of Knudson et al1 and Goldman and Becklake2 are shown in the table 2. It can be seen that V₂₅ in excised lungs was nearly always higher than TLC expected in life and averaged 20% greater than predicted by Knudson et al1 and 14% greater than predicted by Goldman and Becklak2. For male lungs, a significant correlation with height was found (V₂₅ = 0.899 height - 8.05, r = 0.57, p < 0.05) but not for females (r = 0.47). However, there was a trend for the females and the lack of significance may be due to the narrow height range (156-168 cm) compared with the males (160-187 cm) and the small number of cases. The regression line for males is compared with that obtained by Knudson et al1 in fig 1. There was no difference in slope but a significant difference in elevation (p < 0.025). Since the volumes in this study were measured at ATP and these volumes in vivo are corrected to BTPS, the...

Table 1 Sex, age, and lung volumes of 28 emphysema-free lungs

<table>
<thead>
<tr>
<th>Lung</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Ratio of V₂₅ to predicted TLC (Knudson et al)</th>
<th>Ratio of V₂₅ to predicted TLC (Goldman and Becklake)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>47</td>
<td>1-17</td>
<td>1-08</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>65</td>
<td>1-18</td>
<td>1-20</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>22</td>
<td>1-16</td>
<td>1-11</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>39</td>
<td>1-17</td>
<td>1-15</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>35</td>
<td>1-08</td>
<td>1-01</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>56</td>
<td>1-00</td>
<td>0-99</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>22</td>
<td>1-08</td>
<td>1-02</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>77</td>
<td>1-09</td>
<td>1-05</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>44</td>
<td>0-99</td>
<td>0-99</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>74</td>
<td>1-41</td>
<td>1-37</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>76</td>
<td>0-95</td>
<td>0-91</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>14</td>
<td>0-96</td>
<td>0-84</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>55</td>
<td>1-31</td>
<td>1-32</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>48</td>
<td>0-91</td>
<td>0-87</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>16</td>
<td>1-19</td>
<td>1-05</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>54</td>
<td>1-26</td>
<td>1-26</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>55</td>
<td>1-38</td>
<td>1-37</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>48</td>
<td>1-20</td>
<td>1-16</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>52</td>
<td>1-44</td>
<td>1-33</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>64</td>
<td>1-43</td>
<td>1-35</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>17</td>
<td>1-18</td>
<td>1-03</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>25</td>
<td>1-11</td>
<td>1-03</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>41</td>
<td>1-51</td>
<td>1-37</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>27</td>
<td>1-04</td>
<td>0-91</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>86</td>
<td>1-24</td>
<td>1-23</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>71</td>
<td>1-02</td>
<td>1-04</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>58</td>
<td>1-64</td>
<td>1-57</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>63</td>
<td>1-09</td>
<td>1-02</td>
</tr>
</tbody>
</table>

Mean ± SE 1-20 ± 0-03 1-14 ± 0-04
Fig 1 Relationship between the regression lines of TLC versus height in vivo and V\textsubscript{25} versus height in excised lungs. The slopes are not significantly different, but the elevation of V\textsubscript{25} versus height is significantly higher.

difference in elevation is even greater. There was no significant correlation of V\textsubscript{25} with age independent of height in males or females (age versus V\textsubscript{25}/height2, r = 0.32, r = 0.09 for males and females, respectively). For the latter calculation, the data of the three males under the age of 20 years were excluded since height increases up to adulthood and then declines with age. There was also no significant correlation between (VL minus lung weight)/height2 and age (r = 0.07, r = 0.25, for males and females, respectively).

The ratio of VL minus lung weight to V\textsubscript{25} in the normal lungs was 0.75 ± 0.02 with no significant difference between males and females. There was also no correlation between the lung size (V\textsubscript{25}) and this ratio (r = −0.11) or age and this ratio (r = 0.06). The range of ratios was 0.48 to 0.94. The ratio of VL minus lung weight to predicted TLC was 0.91 ± 0.03 and was not related to age (r = 0.28). The VL minus lung weight was significantly lower than predicted TLC (p < 0.01, paired Student’s t test). Therefore, the correction factor which would need to be applied to any linear measurement in these lungs to correct back to V\textsubscript{25} ranged from 1.28 to 1.02 (mean 1.10), being given by (V\textsubscript{25}/VL minus lung weight).1/3 However, to correct back to TLC in life, the mean factor is only 1.03 (predicted TLC/VL minus lung weight).1/3

In the children’s lungs, V\textsubscript{25} ranged from 4.4 to 1905 ml and the VL minus lung weight/V\textsubscript{25} ratios ranged from 0.58 to 1.84 (mean ± SD = 1.08 ± 0.38). However, a significant relationship between V\textsubscript{25} and this ratio was found (VL minus lung weight/V\textsubscript{25} ratios ranged from 0.58 to 1.84 (mean ± SD = 1.08 ± 0.38). However, a significant relationship between V\textsubscript{25} and this ratio was found (VL minus lung weight/V\textsubscript{25} = 1.14 + 0.0026 V\textsubscript{25}, r = −0.41, p < 0.01).

In 39 lungs (age range 37–77 yr), varying degrees of emphysema were noted ranging from trace to grade 60. The ratio of V\textsubscript{25} to V\textsubscript{30} in the emphysematous lungs was 0.999 ± 0.002. A significant relationship between the ratio of V\textsubscript{25} to predicted TLC during life (Knudson et al1) and the emphysema grade was found (V\textsubscript{25}/predicted TLC = 0.0075 emphysema grade ± 1.23, r = 0.45, p < 0.01). The emphysematous lungs were divided into three groups on the basis of the degree of emphysema. The ratios of V\textsubscript{25}/predicted TLC in the three groups can be seen in fig 2. Only in groups 2 and 3 was this ratio significantly higher than in the emphysema-free lungs. However, group 1 was not significantly different from groups 2 and 3. A significant relationship between the ratio of V\textsubscript{25}/predicted V\textsubscript{25} was also obtained (V\textsubscript{25}/predicted V\textsubscript{25} = 0.0051 emphysema grade + 1.06, r = 0.40, p < 0.05). The ratios of V\textsubscript{25}/predicted V\textsubscript{25} in the three groups (fig 3) yielded similar results to those in fig 2 with only groups 2 and 3 being significantly different from the emphysema-free lungs, but no difference between groups 1, 2, and 3.

The mean ratio ± SD of VL minus lung weight/V\textsubscript{25} was 0.77 ± 0.12 with a range of

Fig 2 V\textsubscript{25} expressed as a percentage of predicted TLC in vivo in the four groups of lungs. Groups 2 and 3 are significantly different from group 0 but there is no significant difference between groups 1, 2, and 3.

Group 0 = 28 emphysema-free lungs, group 1 = 11 lungs with emphysema grade 0–5, group 2 = 20 lungs with emphysema grade 5–20, group 3 = eight lungs with emphysema > 20.
0.43 to 0.98 and this was very similar to the normal lungs. This ratio was not related to the emphysema grade (r = 0.10).

The emphysema-free lungs were then combined with those showing minimal emphysema—that is, group 1, in order to recalculate the age regression of V_{25}/height^3. Again, the three male lungs under age 20 years were excluded. Now, the males demonstrated a significant relationship between age and V_{25}/height^3 ($V_{25} = 0.0072 \times \text{age} + 1.12$, r = 0.48, p < 0.05), but not the females.

Discussion

Many studies have shown that TLC in life in normal individuals is positively correlated with height.\(^1\)\(^-\)\(^4\) In some studies, TLC has also been shown to have a significant negative correlation with age independent of height.\(^2\)\(^-\)\(^4\) Since it has been well documented that lung elastic recoil decreases with age,\(^1\)\(^-\)\(^2\)\(^-\)\(^4\) it is thought that weaker inspiratory muscles in conjunction with a stiffer chest wall in older individuals either exactly counterbalances the loss of elastic recoil of the lungs or slightly overcompensates for it. In this study, V_{25} was measured in excised lungs free of the effects of age-related changes in chest wall and respiratory muscle mechanics. It is, therefore, somewhat surprising that in the emphysema-free lungs, V_{25} was only significantly related to height and not to age, although this is in keeping with the results of a previous study\(^18\) which showed no increase with age of V_L corrected for height. There was a trend for the males to have a greater V_{25} with increasing age but not females, and this may be related to the observation that loss of elastic recoil with age is greater in males than in females.\(^21\) The V_{25} was shown to be close to maximum lung volume by the demonstration that V_{25} was on the plateau of both the inspiratory and expiratory pressure-volume curves. The V_{25} was consistently larger than predicted from data obtained in living subjects, averaging 20% increase compared with the best prediction data. This suggests that the chest wall at all ages constrains the lungs and prevents them reaching their maximum volume or, alternatively, that some basic alteration in elastic properties of the lungs occurs after death. In addition, despite loss of elastic recoil with age, the maximum lung volume remains fixed throughout life, governed by body size. Astrand et al.\(^23\) in a longitudinal study, demonstrated an increase in TLC with age in a group of physically fit subjects. In the light of the present findings, this would be difficult to explain unless the chest wall became more compliant and respiratory muscles stronger with age.

There are a number of possible factors in this study which may affect these conclusions. If height had been systematically underestimated by the measurement of postmortem body length, then the predicted values for TLC would be falsely low. In addition, little was known about the medical histories of these subjects. It is possible that some of them may not have been included in a series of normal, healthy volunteers during life. On the other hand, it is also quite possible, indeed likely, that the minimal or equivocal degrees of emphysema of the lungs in group 1 would not have led to their exclusion from such a series. When they, with their inherent age bias and larger V_{25}, were combined with the emphysema-free lungs, a significant age-related change in V_{25} resulted in males.

If lungs are distended with formalin, the bronchi tied and left overnight, they lose about 25% of lung volume.\(^24\) It is in order to overcome this shrinkage that a constant P_L is used during the time of fixation. However, in the present study, despite application of constant pressure, underinflation of varying degree occurred compared to V_{25}. Because of this underinflation, the linear measurement of a structure in the fixed lung would need to be increased by an average of 10% but in some individual lungs, by up to 30% to correct back to V_{25}, whereas much lower factors correct back to TLC during life.

The question arises as to which is the "correct"
l肺体积用于形态学目的。VL
出肺重量接近于预测的TLC。在这一系
统中，平均值为91%。 presume
于理想的肺重量会较大于TLC，因
为肺的重量通常较大。) 在另一
个研究，\(^\text{18}\) 我们已经表明，
VL是，平均值8%大于放射学
determined TLC和当允许是为
TLC。然而，此研究中，V_{25}和VL
为肺重量的置换关系。此关系
可能不适用于相对较大或
V_{25}和VL不相关于
TLC。然而，当V_{25}
be VL first so that the correction
体积在肺中达到V_{25}
It is interesting, however, that in the
children’s lungs which had a much greater range of
V_{25} and VL were not related in the
adult lungs to sex, age, or lung size, it may be
better to measure V_{25} first so that the correction
factors in individual lungs can be calculated.

The lungs with emphysema demonstrated a
V_{25} significantly greater than the normal lungs. However, when divided into groups according to
the severity of emphysema, it became apparent
that significant increases in V_{25} occurred only
when the emphysema grade was greater than 5.
However, since groups 1, 2, and 3 were not significantly different from each other, it may
also be argued that the presence of emphysema
is more important than the grade in determining
increases in lung volume.

Underinflation with formalin of the
emphysematous lungs occurred to an almost
equal degree to that observed in the emphysema-
free lungs. By inflating the lungs with air first
and meticulously sealing all leaks when present,
we can be certain that leakage was not a factor.
However, emphysematous lungs tend to be leaky
and when this occurs, VL may be expected
to be even smaller. Therefore, once again, this
suggests the need for preliminary air inflation.
It should be noted that overinflation (VL minus
lung weight/V_{25} ratio of > 1.0) was not observed
in any lung in the present series.

This work was supported by MRC (Canada)
Grant No. MA6179 and grants from the Royal
Australasian College of Physicians and the
Coppleson Postgraduate Medical Institute of the
University of Sydney, New South Wales,
Australia.

\textbf{References}

1. Knudson RJ, Clark DF, Kennedy TC, Knudson
DE. Effect of aging alone on mechanical proper-
ties of the normal adult human lung. \textit{J Appl
2. Goldman HI, Becklake MR. Respiratory function
tests. Normal values at median altitudes and the
prediction of normal results. \textit{Am Rev Respir
3. Kaltreider NL, Fray WW, Van Zile Hyde H. The
effect of age on the total pulmonary capacity
and its subdivisions. \textit{Am Rev Tuberc} 1938; 37:
662–89.
4. Needham CD, Rogan MC, McDonald I. Normal
standards for lung volumes, intrapulmonary gas-
mixing, and maximum breathing capacity. \textit{Thorax}
5. Grimby G, Söderholm B. Spirometric studies in
normal subjects. III. Static lung volumes and
maximum voluntary ventilation in adults with a
note on physical fitness. \textit{Acta Med Scand} 1963;
6. Marshall R. The physical properties of the lungs
in relation to the subdivisions of lung volume.
7. Finucane KE, Colebatch HJH. Elastic behavior of
the lung in patients with airway obstruction.
AH. Lung recoil pressure, airway resistance and
forced flows related to morphologic emphysema.
9. Pratt PC, Jutabha O, Klugh GA. Quantitative
relationship between structural extent of centri-
lobular emphysema and post mortem volume and
flow characteristics of lungs. \textit{Med Thorac} 1965;
10. Gelb AF, Gold WM, Wright RR, Bruch HR,
Nadel JA. Physiologic diagnosis of subclinical
11. Zamel N, Hogg J, Gelb A. Mechanisms of maxi-
mal expiratory flow limitation in clinically
suspected emphysema and obstruction of the
peripheral airways. \textit{Am Rev Respir Dis} 1976;
113:337–45.
12. Watanabe S, Mitchell M, Renzetti AD. Correla-
tion of structure and function in chronic
pulmonary emphysema. \textit{Am Rev Respir Dis}
13. Thurlbeck WM, Henderson JA, Fraser RG, Bates
DV. Chronic obstructive lung disease. A com-
parison between clinical, roentgenologic, func-
tional and morphologic criteria in chronic
bronchitis, emphysema, asthma and bronchi-
14. Jenkins DE, Greenberg SD, Boushy SF,
Schweppe HI, O’Neal RM. Correlation of
morphologic emphysema with pulmonary function
parameters. \textit{Trans Assoc Am Physicians} 1965;
78:218–30.
15. Heard BE. A pathological study of emphysema

