Responses

Download PDFPDF
Original research
Respiratory exacerbations are associated with muscle loss in current and former smokers
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • A rapid response is a moderated but not peer reviewed online response to a published article in a BMJ journal; it will not receive a DOI and will not be indexed unless it is also republished as a Letter, Correspondence or as other content. Find out more about rapid responses [https://authors.bmj.com/after-submitting/rapid-responses/].
  • We intend to post all responses which are approved by the Editor, within 14 days (BMJ Journals) or 24 hours (The BMJ), however timeframes cannot be guaranteed. Responses must comply with our requirements and should contribute substantially to the topic, but it is at our absolute discretion whether we publish a response, and we reserve the right to edit or remove responses before and after publication and also republish some or all in other BMJ publications, including third party local editions in other countries and languages
  • Our requirements are stated in our rapid response terms and conditions and must be read. These include ensuring that: i) you do not include any illustrative content including tables and graphs, ii) you do not include any information that includes specifics about any patients,iii) you do not include any original data, unless it has already been published in a peer reviewed journal and you have included a reference, iv) your response is lawful, not defamatory, original and accurate, v) you declare any competing interests, vi) you understand that your name and other personal details set out in our rapid response terms and conditions will be published with any responses we publish and vii) you understand that once a response is published, we may continue to publish your response and/or edit or remove it in the future.
  • By submitting this rapid response you are agreeing to our terms and conditions for rapid responses [https://www.bmj.com/company/journals-terms-and-conditions-for-rapid-responses/] and understand that your personal data will be processed in accordance with those terms and our privacy notice [https://www.bmj.com/company/your-privacy/].
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    Erector spinae muscle area is not associated with mortality in the COPDGene cohort
    • Stefanie E Mason, Pulmonary and Critical Care Physician Brigham & Women's Hospital
    • Other Contributors:
      • George R Washko, Pulmonary and Critical Care Physician

    We thank Tanimura and colleagues for their thoughtful commentary on our recent manuscript, “Respiratory exacerbations are associated with muscle loss in current and former smokers” and read their analysis of erector spinae muscle area (ESMA) with interest (1). In their commentary, they note that muscle loss can occur heterogeneously, with the greatest expected impact on the muscles of ambulation. They suggest that erector spinae muscles, due to their fiber composition and anti-gravity role, are a better reflection of inactivity-related muscle loss and posit that changes in pectoralis muscle area (PMA) may only reflect changes in nutrition (as measured by body mass index, BMI).

    We agree that muscle loss is unlikely to be uniform; however, a disconnect has been reported between the postural muscles of the trunk and ambulatory muscle (e.g. quadriceps) weakness, despite similar fiber types (2). Few studies measure both groups of muscles simultaneously, but there is evidence that inspiratory force is more affected than peripheral muscle force in patients with COPD; implying that deconditioning is not the sole driver of muscle dysfunction (3). While the pectoralis muscle potentially underestimates inactivity-related atrophy, these studies suggest its role as an accessory muscle of inspiration makes it a reasonable target for capturing any underlying systemic process.

    In contrast to Tanimura et al’s findings, in the COPDGene participants (n=8,603) BMI was more stro...

    Show More
    Conflict of Interest:
    None declared.
  • Published on:
    Frequent exacerbations of COPD can contribute to accelerated loss of antigravity muscles rather than pectoralis muscles
    • Kazuya Tanimura, Pulmonologist Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University
    • Other Contributors:
      • Susumu Sato, Pulmonologist
      • Shigeo Muro, Pulmonologist
      • Toyohiro Hirai, Pulmonologist

    To the editor,

    We read the interesting report by Mason et al, “Respiratory exacerbations are associated with muscle loss in current and former smokers”.[1] In this study, the authors demonstrated that exacerbations are associated with accelerated loss of pectoralis muscles (PMs) in two large observational cohorts and quantified the impact of each annual exacerbation as the equivalent of 6 months of age-expected decline.
    Skeletal muscle loss is one of the major systemic manifestations associated with mortality in patients with COPD. Not only systemic muscle loss but also loss of specific muscle groups are associated with clinical outcomes such as exacerbations and mortality in patients with COPD.[2, 3] Moreover, muscle loss can occur heterogeneously.[4] This may be partially because each muscle group has its physiological function or biological characteristics such as muscle fiber composition. This supports that loss of specific muscle groups may have different implications in the clinical course of COPD.
    We previously analyzed the cross-sectional area of erector spinae muscles (ESMCSA) and that of PMs (PMCSA) in male patients with COPD using chest CT.[3] ESMs are ones of antigravity muscles which are involved in maintaining an upright posture. PMs play an important role in the movement of upper limbs. Both muscles also act as accessory inspiratory muscles. ESMs are composed of 60% type 1 fibers and 40% of type 2 fibers and PMs are composed in the reverse...

    Show More
    Conflict of Interest:
    None declared.