Responses

Download PDFPDF
Original article
The use of pretest probability increases the value of high-resolution CT in diagnosing usual interstitial pneumonia
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • A rapid response is a moderated but not peer reviewed online response to a published article in a BMJ journal; it will not receive a DOI and will not be indexed unless it is also republished as a Letter, Correspondence or as other content. Find out more about rapid responses.
  • We intend to post all responses which are approved by the Editor, within 14 days (BMJ Journals) or 24 hours (The BMJ), however timeframes cannot be guaranteed. Responses must comply with our requirements and should contribute substantially to the topic, but it is at our absolute discretion whether we publish a response, and we reserve the right to edit or remove responses before and after publication and also republish some or all in other BMJ publications, including third party local editions in other countries and languages
  • Our requirements are stated in our rapid response terms and conditions and must be read. These include ensuring that: i) you do not include any illustrative content including tables and graphs, ii) you do not include any information that includes specifics about any patients,iii) you do not include any original data, unless it has already been published in a peer reviewed journal and you have included a reference, iv) your response is lawful, not defamatory, original and accurate, v) you declare any competing interests, vi) you understand that your name and other personal details set out in our rapid response terms and conditions will be published with any responses we publish and vii) you understand that once a response is published, we may continue to publish your response and/or edit or remove it in the future.
  • By submitting this rapid response you are agreeing to our terms and conditions for rapid responses and understand that your personal data will be processed in accordance with those terms and our privacy notice.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

Vertical Tabs

Other responses

Jump to comment:

  • Published on:
    Changing the way we diagnose UIP: it’s all about probabilities

    I read with great interest the article “The use of pretest probability increases the value of high-resolution CT in diagnosing usual interstitial pneumonia”, by Brownell and colleagues [1]. The study has great methodological strength, and I applaud the authors for such an elegant work. But what really caught my attention was the clear use of pre-test probability and likelihood ratio to establish the diagnosis of usual interstitial pneumonia (UIP) in patients with suspected UIP. I believe this article should change the way we care for those patients.

    The study included patients with “possible UIP" and “inconsistent with UIP” patterns on high-resolution computed tomography (HRCT) of the chest. Those patients represent a diagnostic dilemma we commonly face in interstitial lung diseases clinical practice. Three different radiologists (two in the derivation and one in the validation cohort) reviewed the HRCT scans, and most importantly: they were blinded to clinical information and pathology results. All patients had the reference standard surgical lung biopsy, which were prospectively evaluated by expert pathologists.

    The likelihood ratio for male patients, with ≥ 60 years-old, and possible UIP with traction bronchiectasis score ≥ 4 was as high as 47 in the derivation cohort. Since likelihood ratios are a ratio of two likelihoods (the likelihood of a test results in disease / the likelihood of the same test result in no disease [2]), the further away from on...

    Show More
    Conflict of Interest:
    None declared.