Article Text

Download PDFPDF
Wavering in the breeze: is multiple breath washout useful in primary ciliary dyskinesia?
  1. Andrew Bush1,2,3,
  2. Samantha Irving3
  1. 1Imperial College, London, UK
  2. 2National Heart and Lung Institute, London, UK
  3. 3Royal Brompton Harefield NHS Foundation Trust, London, UK
  1. Correspondence to Professor Andrew Bush, Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK; a.bush{at}imperial.ac.uk

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

It has long been known that first second forced expired volume (FEV1) is insensitive both to distal airway disease and also structural lung disease as measured by high-resolution CT (HRCT).1 Furthermore, monitoring airway diseases has become harder as successful therapies have limited the rate of deterioration, making change in FEV1 less and less useful in clinical practice and as an endpoint in randomised controlled trials. Accordingly, we have had to deploy novel measures (or in the case of multiple breath washout (MBW), rediscovered old techniques). The use of MBW to calculate lung clearance index (LCI) and calculate other, more sophisticated phase 111 analyses has taken off in the last decade or so. The most salient data have come from cystic fibrosis (CF). LCI has been shown in cross-sectional studies to be abnormal more often than spirometry or plethysmography;2 ,3 in longitudinal studies, LCI becomes abnormal before these other measures;4 it predicts future lung function5 and CF lung attacks;6 it is sensitive to interventions such as treatment of a CF lung attack with intravenous antibiotics;7 and has been used as an endpoint in randomised controlled trials,8–10 particularly in children in whom spirometry is normal or nearly normal.11 Cross-sectional comparisons with HRCT have shown that LCI is very sensitive to structural airway wall disease12 ,13 and can reduce the number of HRCT scans in the CF clinic. Furthermore, the normal values of LCI flat line throughout life, other than slight rises in the very young14 and the elderly.15 LCI clearly has limitations—there is no signal from areas of the lung that are unventilated or …

View Full Text

Footnotes

  • Funding AB was supported by the NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College London.

  • Competing interests None.

  • Provenance and peer review Commissioned; internally peer reviewed.

Linked Articles