Article Text
Abstract
Obstructive sleep apnoea (OSA) can result in significant morbidities including the cardiovascular, metabolic and neurocognitive systems. These effects are purportedly mediated via activation of inflammatory cascades and the induction of oxidative stress, ultimately resulting in cellular injury and dysfunction. While great advances have been made in sleep medicine research in the past decades, there are still wide gaps in our knowledge concerning the exact underlying pathophysiological mechanisms of OSA and consequences. Without resolving these issues, the reasons why patients with a similar severity of OSA can have markedly different clinical presentation and end-organ morbidity, that is, phenotype, will continue to remain elusive. This review aims to highlight the recent exciting discoveries in genotype-phenotype interactions, epigenetics, genomics and proteomics related to OSA. Just as PCR revolutionised the field of genetics, the potential power of ‘Omics’ promises to transform the field of sleep medicine, and provide critical insights into the downstream pathological cascades inherent to OSA, thereby enabling personalised diagnosis and management for this highly prevalent sleep disorder.
- Sleep apnoea
Statistics from Altmetric.com
Linked Articles
- Airwaves