Article Text
Abstract
Background: Previous cross-sectional studies have shown that job change due to breathing problems at the workplace (respiratory work disability) is common among adults of working age. That research indicated that occupational exposure to gases, dust and fumes was associated with job change due to breathing problems, although causal inferences have been tempered by the cross-sectional nature of previously available data. There is a need for general population-based prospective studies to assess the incidence of respiratory work disability and to delineate better the roles of potential predictors of respiratory work disability.
Methods: A prospective general population cohort study was performed in 25 centres in 11 European countries and one centre in the USA. A longitudinal analysis was undertaken of the European Community Respiratory Health Survey including all participants employed at any point since the baseline survey, 6659 subjects randomly sampled and 779 subjects comprising all subjects reporting physician-diagnosed asthma. The main outcome measure was new-onset respiratory work disability, defined as a reported job change during follow-up attributed to breathing problems. Exposure to dusts (biological or mineral), gases or fumes during follow-up was recorded using a job-exposure matrix. Cox proportional hazard regression modelling was used to analyse such exposure as a predictor of time until job change due to breathing problems.
Results: The incidence rate of respiratory work disability was 1.2/1000 person-years of observation in the random sample (95% CI 1.0 to 1.5) and 5.7/1000 person-years in the asthma cohort (95% CI 4.1 to 7.8). In the random population sample, as well as in the asthma cohort, high occupational exposure to biological dust, mineral dust or gases or fumes predicted increased risk of respiratory work disability. In the random sample, sex was not associated with increased risk of work disability while, in the asthma cohort, female sex was associated with an increased disability risk (hazard ratio 2.8, 95% CI 1.3 to 5.9).
Conclusions: Respiratory work disability is common overall. It is associated with workplace exposures that could be controlled through preventive measures.
Statistics from Altmetric.com
Footnotes
See Editorial, p 280
Funding: The coordination of the occupational asthma component of the ECRHS-II was supported by grant 1 R01 HL62633-01 of the US NIH/NORA/NHLBI. The coordination of ECRHS II was supported by the European Commission as part of their Quality of Life programme and from research contract No FOOD_CT_2004_506378, the Ga2len project, Global Allergy and Asthma European Network. The following bodies funded the local studies in ECRHS II included in this paper: Albacete: Fondo de Investigaciones Santarias (FIS) (grant code: 97/0035-01, 99/0034-01 and 99/0034-02), Hospital Universitario de Albacete, Consejeria de Sanidad; Antwerp: FWO (Fund for Scientific Research)-Flanders Belgium (grant code: G.0402.00), University of Antwerp, Flemish Health Ministry; Barcelona: SEPAR, Public Health Service (grant code R01 HL62633-01), Fondo de Investigaciones Santarias (FIS) (grant code 97/0035-01, 99/0034-01 and 99/0034-02) CIRIT (grant code 1999SGR 00241) Red Respira ISCII; Basel: Swiss National Science Foundation, Swiss Federal Office for Education & Science, Swiss National Accident Insurance Fund (SUVA), USC NIEHS Center grant 5P30 ES07048; Bergen: Norwegian Research Council, Norwegian Asthma & Allergy Association (NAAF), Glaxo Wellcome AS, Norway Research Fund; Erfurt: GSF-National Research Centre for Environment & Health, Deutsche Forschungsgemeinschaft (DFG) (grant code FR 1526/1-1); Galdakao: Basque Health Dept; Goteborg: Swedish Heart Lung Foundation, Swedish Council for Worklife and Social Research (FAS), Swedish Cancer & Allergy Foundation; Grenoble: Programme Hospitalier de Recherche Clinique-DRC de Grenoble 2000 no. 2610, Ministry of Health, Direction de la Recherche Clinique, Ministere de l’Emploi et de la Solidarite, Direction Generale de la Sante, CHU de Grenoble, Comite des Maladies Respiratoires de l’Isere; Hamburg: GSF-National Reasearch Centre for Environment & Health, Deutsche Forschungsgemeinschaft (DFG) (grant code MA 711/4-1); Ipswich and Norwich: Asthma UK (formerly known as National Asthma Campaign); Huelva: Fondo de Investigaciones Santarias (FIS) (grant code 97/0035-01, 99/0034-01 and 99/0034-02); Melbourne: National Health and Medical Research Council of Australia; Oviedo: Fondo de Investigaciones Santarias (FIS) (grant code 97/0035-01, 99/0034-01 and 99/0034-02); Paris: Ministere de l’Emploi et de la Solidarite, Direction Generale de la Sante, UCB-Pharma (France), Aventis (France), Glaxo France, Programme Hospitalier de Recherche Clinique-DRC de Grenoble 2000 no. 2610, Ministry of Health, Direction de la Recherche Clinique, CHU de Grenoble; Pavia: Glaxo-SmithKline Italy, Italian Ministry of University and Scientific and Technological Research (MURST), local university funding for research 1998 and 1999 (Pavia, Italy); Tartu: Estonian Science Foundation; Turin: ASL 4 Regione Piemonte (Italy), AO CTO/ICORMA Regione Piemonte (Italy), Italian Ministry of University and Scientific and Technological Research (MURST); Glaxo-SmithKline Italy; Umeå: Swedish Heart Lung Foundation, Swedish Foundation for Health Care Sciences & Allergy Research, Swedish Asthma & Allergy Foundation, Swedish Cancer & Allergy Foundation; Uppsala: Swedish Heart Lung Foundation, Swedish Foundation for Health Care Sciences & Allergy Research, Swedish Asthma & Allergy Foundation, Swedish Cancer & Allergy Foundation; Verona: University of Verona; Italian Ministry of University and Scientific and Technological Research (MURST); Glaxo-SmithKline Italy. United States: Department of Health, Education and Welfare Public Health Service (grant #2 S07RR05521-28).
Competing interests: None.
Ethics approval: Approval was obtained from all local ethics committees.
List of Principal Investigators and Senior Scientific Team. Australia: Melbourne (M Abramson, R Woods, E H Walters, F Thien, G Benke); Belgium: South Antwerp and Antwerp City (P Vermeire, J Weyler, M Van Sprundel, V Nelen); Estonia: Tartu (R Jogi, A Soon); France: Paris (F Neukirch, B Leynaert, R Liard, M Zureik); Grenoble (I Pin, J Ferran-Quentin); Germany: Erfurt (J Heinrich, M Wjst, C Frye, I Meyer); Iceland (T Gislason); Italy: Turin (M Bugiani, P Piccioni, A Carosso, W Arossa, E Caria, G Castiglioni, E Migliore, C Romano, D Fabbro, G Ciccone, C Magnani, P Dalmasso, R Bono, G Gigli, A Giraudo, M C Brussino, C Bucca, G Rolla ); Verona (R de Marco, G Verlato, E Zanolin, S Accordini, A Poli, V Lo Cascio, M Ferrari); Pavia (A Marinoni, S Villani, M Ponzio, F Frigerio, M Comelli, M Grassi, I Cerveri, A Corsico); The Netherlands (J Schouten); Norway: Bergen (A Gulsvik, E Omenaas, C Svanes, B Laerum); Spain: Barcelona (J M Antó, J Sunyer, M Kogevinas, J P Zock, X Basagana, A Jaen, F Burgos); Huelva (J Maldonado, A Pereira, JL Sanchez); Albacete (J Martinez-Moratalla Rovira, E Almar); Galdakao (N Muniozguren, I Urritia); Oviedo (F Payo); Sweden: Uppsala (C Janson, G Boman, D Norback, M Gunnbjornsdottir), Goteborg (K Toren, L Lillienberg, A Dahlman-Höglund); Umeå (E Norrman, M Soderberg, K Franklin, B Lundback, B Forsberg, L Nystrom); Switzerland: Basel (N Künzli, B Dibbert, M Hazenkamp, M Brutsche, U Ackermann-Liebrich); United Kingdom (P Burney, S Chinn, D Jarvis); Norwich (D Jarvis, B Harrison); Ipswich (D Jarvis, R Hall, D Seaton); USA: Portland (M Osborne, S Buist, W Vollmer, L Johnson). Development of job-exposure matrix: Roel Vermeulen.