Article Text
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) is associated with a 2–3-fold increase in the risk of ischaemic heart disease, stroke and sudden death. The mechanisms responsible for this association are not clear and appear to be independent of smoking history.
Objective: We test the hypothesis that patients with COPD have increased arterial stiffness and blood pressure in comparison with age and smoking matched controls.
Methods: In a prospective case control study, we recruited 102 patients with COPD and 103 healthy controls matched for age and smoking status. Patients were assessed by clinical history and spirometry, with arterial stiffness and blood pressure determined using radial artery applanation tonometry and sphygmomanometry.
Results: Patients with COPD had increased arterial stiffness compared with matched controls, with elevated augmentation pressure (17 (1) vs 14 (1) mm Hg; p = 0.005) and a reduced time to wave reflection (131 (1) vs 137 (2) ms; p = 0.004). These differences were associated with increases in both diastolic (82 (1) vs 78 (1) mm Hg; p = 0.005) and systolic blood pressure (147 (2) vs 132 (2) mm Hg; p<0.001). Serum C reactive protein concentrations were threefold higher in patients (6.1 (0.9) vs 2.3 (0.4) mg/l; p = 0.001). Data are presented as mean (SEM).
Conclusions: Patients with COPD have increased arterial stiffness and blood pressure in comparison with controls matched for age and smoking status. We speculate that increased systemic inflammation and vascular dysfunction could potentially explain the excess cardiovascular morbidity and mortality associated with COPD.
Statistics from Altmetric.com
Footnotes
Funding: The studies are supported by a National Institute of Health Grant (RFA-HL-02-005) and a Programme Development Grant from the Chief Scientists Office, Scotland. NLM is supported by a Michael Davies Research Fellowship from the British Cardiac Society.
Competing interests: None.
Ethics approval: All studies were performed with local ethics approval.