Article Text
Abstract
Background: The re-emergence of tuberculosis as a global health problem over the past two decades, accompanied by an increase in tuberculosis drug resistance, prompted the development of a comprehensive national surveillance system for tuberculosis drug resistance in 1993.
Methods: The UK Mycobacterial Resistance Network (Mycobnet), which includes all mycobacterial reference and regional laboratories in the UK, collects a minimum dataset on all individuals from whom an initial isolate of Mycobacterium tuberculosis complex has been isolated and submitted by source hospital laboratories. Data sought include susceptibility to first line antibiotics, demographic, geographical, and risk factor information.
Results: There were 25 217 reports of initial isolates of M tuberculosis complex in the UK between 1993 and 1999. All were tested for sensitivity to isoniazid, rifampicin, and ethambutol and 12 692 of the isolates were also tested for sensitivity to pyrazinamide and streptomycin. A total of 1523 (6.1%) isolates were resistant to one or more drugs, 1397 isolates (5.6%) were resistant to isoniazid with or without resistance to other drugs, and 299 (1.2%) were multidrug resistant. Although the numbers of drug resistant isolates increased over the period, the proportions remained little changed. Certain groups of people were at a higher risk of acquiring drug resistant tuberculosis including younger men, residents of London, foreign born subjects, patients with a previous history of tuberculosis and those infected with HIV.
Conclusion: Although the proportion of drug resistant tuberculosis cases appears to be stable in the UK at present, more than one in 20 patients has drug resistant disease at diagnosis and more than one in 100 has multidrug resistant disease. Tuberculosis control measures should be strengthened to minimise the emergence of drug resistance through rapid diagnosis, rapid identification of drug resistance, supervised treatment, and maintenance of comprehensive surveillance.
- surveillance
- tuberculosis
- drug resistance