Article Text

Download PDFPDF

Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke
  1. B Balint,
  2. L E Donnelly,
  3. T Hanazawa,
  4. S A Kharitonov,
  5. P J Barnes
  1. Department of Thoracic Medicine, Imperial College School of Medicine at the National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK
  1. Professor P J Barnesp.j.barnes{at}ic.ac.uk

Abstract

BACKGROUND Cigarette smoking reduces the level of exhaled nitric oxide (NO) in healthy subjects, although the mechanism is unclear. NO is a highly reactive molecule which can be oxidised or complexed with other biomolecules, depending on the microenvironment. The stable oxidation end products of NO metabolism are nitrite and nitrate. This study investigated the effect of smoking on NO metabolites in exhaled breath condensate.

METHODS Fifteen healthy current smokers were recruited together with 14 healthy non-smokers. Measurement of exhaled NO, lung function, and collection of exhaled breath condensate were performed. Nitrite, nitrite + nitrate, S-nitrosothiols, and nitrotyrosine levels were measured. The effect of inhaling two cigarettes in smokers was also evaluated. The mean level of exhaled NO in smokers was significantly lower than in non-smokers (4.3 (0.3) ppb v 5.5 (0.5) ppb, p<0.05).

RESULTS There was no difference in the levels of nitrite, nitrite + nitrate, S-nitrosothiols, and nitrotyrosine in the exhaled breath condensate at the baseline visit between smokers and non-smokers. After smoking, nitrite + nitrate levels were significantly but transiently increased (from 20.2 (2.8) μM to 29.8 (3.4) μM, p<0.05). There was no significant change in the levels of exhaled NO, nitrite, S-nitrosothiols, or nitrotyrosine 30 and 90 minutes after smoking.

CONCLUSIONS These findings suggest that acute smoking can increase the level of nitrate, but not nitrite, S-nitrosothiols, or nitrotyrosine in breath condensate. The deleterious effect of oxidant radicals induced by smoking may contribute to the epithelial damage of airways seen in smokers.

  • cigarette smoking
  • nitric oxide metabolites
  • exhaled nitric oxide
View Full Text

Statistics from Altmetric.com

Footnotes

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.